Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2013 (2013), Article ID 401413, 9 pages
http://dx.doi.org/10.1155/2013/401413
Research Article

Bayesian Method with Spatial Constraint for Retinal Vessel Segmentation

Institut Fresnel/UMR-CNRS, D. U. de Saint-Jérôme, 13013 Marseille, France

Received 20 March 2013; Revised 22 May 2013; Accepted 10 June 2013

Academic Editor: William Crum

Copyright © 2013 Zhiyong Xiao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. M. Fraz, P. Remagnino, A. Hoppe et al., “Blood vessel segmentation methodologies in retinal images—a survey,” Computer Methods and Programs in Biomedicine, vol. 108, no. 1, pp. 407–433, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Staal, M. D. Abràmoff, M. Niemeijer, M. A. Viergever, and B. van Ginneken, “Ridge-based vessel segmentation in color images of the retina,” IEEE Transactions on Medical Imaging, vol. 23, no. 4, pp. 501–509, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. X. You, Q. Peng, Y. Yuan, Y. M. Cheung, and J. Lei, “Segmentation of retinal blood vessels using the radial projection and semi-supervised approach,” Pattern Recognition, vol. 44, no. 10-11, pp. 2314–2324, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Marín, A. Aquino, M. E. Gegúndez-Arias, and J. M. Bravo, “A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features,” IEEE Transactions on Medical Imaging, vol. 30, no. 1, pp. 146–158, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Niemeijer, J. Staal, B. van Ginneken, M. Loog, and M. D. Abràmoff, “Comparative study of retinal vessel segmentation methods on a new publicly available database,” in Medical Imaging 2004: Image Processing, J. M. Fitzpatrick and M. Sonka, Eds., vol. 5370 of Proceedings of SPIE, pp. 648–656, San Diego, Calif, USA, February 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. J. V. B. Soares, J. J. G. Leandro, R. M. Cesar Jr., H. F. Jelinek, and M. J. Cree, “Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification,” IEEE Transactions on Medical Imaging, vol. 25, no. 9, pp. 1214–1222, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. G. B. Kande, P. V. Subbaiah, and T. S. Savithri, “Unsupervised fuzzy based vessel segmentation in pathological digital fundus images,” Journal of Medical Systems, vol. 34, no. 5, pp. 849–858, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Ng, S. T. Clay, S. A. Barman et al., “Maximum likelihood estimation of vessel parameters from scale space analysis,” Image and Vision Computing, vol. 28, no. 1, pp. 55–63, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Hoover, V. Kouznetsova, and M. Goldbaum, “Locating blood vessels in retinal images by piecewise threshold probing of a matched filter reponse,” IEEE Transactions on Medical Imaging, vol. 19, no. 3, pp. 203–210, 2000. View at Publisher · View at Google Scholar
  10. L. Gang, O. Chutatape, and S. M. Krishnan, “Detection and measurement of retinal vessels in fundus images using amplitude modified second-order Gaussian filter,” IEEE Transactions on Biomedical Engineering, vol. 49, no. 2, pp. 168–172, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Zhang, L. Zhang, L. Zhang, and F. Karray, “Retinal vessel extraction by matched filter with first-order derivative of Gaussian,” Computers in Biology and Medicine, vol. 40, no. 4, pp. 438–445, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Yin, M. Adel, and S. Bourennane, “Retinal vessel segmentation using a probabilistic tracking method,” Pattern Recognition, vol. 45, no. 4, pp. 1235–1244, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Adel, A. Moussaoui, M. Rasigni, S. Bourennane, and L. Hamami, “Statistical-based tracking technique for linear structures detection: application to vessel segmentation in medical images,” IEEE Signal Processing Letters, vol. 17, no. 6, pp. 555–558, 2010. View at Publisher · View at Google Scholar
  14. Y. Yin, M. Adel, and S. Bourennane, “An automatic tracking method for retinal vascular tree extraction,” in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '12), pp. 709–712, Kyoto, Japan, March 2012. View at Publisher · View at Google Scholar
  15. M. M. Fraz, S. A. Barman, P. Remagnino et al., “An approach to localize the retinal blood vessels using bit planes and centerline detection,” Computer Methods and Programs in Biomedicine, vol. 108, no. 2, pp. 600–616, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. M. S. Miri and A. Mahloojifar, “Retinal image analysis using curvelet transform and multistructure elements morphology by reconstruction,” IEEE Transactions on Biomedical Engineering, vol. 58, no. 5, pp. 1183–1192, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. F. Zana and J. C. Klein, “Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation,” IEEE Transactions on Image Processing, vol. 10, no. 7, pp. 1010–1019, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. A. M. Mendonça and A. Campilho, “Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction,” IEEE Transactions on Medical Imaging, vol. 25, no. 9, pp. 1200–1213, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. X. Jiang and D. Mojon, “Adaptive local thresholding by verification-based multithreshold probing with application to vessel detection in retinal images,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 1, pp. 131–137, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. M. E. Martinez-Perez, A. D. Hughes, A. V. Stanton, S. A. Thom, A. A. Bharath, and K. H. Parker, “Retinal blood vessel segmentation by means of scale-space analysis and region growing,” in Proceedings of the 2nd International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 90–97, Springer, London, UK, 1999. View at Google Scholar
  21. M. E. Martinez-Perez, A. D. Hughes, S. A. Thom, A. A. Bharath, and K. H. Parker, “Segmentation of blood vessels from red-free and fluorescein retinal images,” Medical Image Analysis, vol. 11, no. 1, pp. 47–61, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. M. E. Martinez-Perez, A. D. Hughes, S. A. Thom, and K. H. Parker, “Improvement of a retinal blood vessel segmentation method using the insight segmentation and registration toolkit (ITK),” in Proceedings of the 29th Annual International Conference of IEEE-EMBS, Engineering in Medicine and Biology Society (EMBC '07), pp. 892–895, Lyon, France, August 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Vlachos and E. Dermatas, “Multi-scale retinal vessel segmentation using line tracking,” Computerized Medical Imaging and Graphics, vol. 34, no. 3, pp. 213–227, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. B. Al-Diri, A. Hunter, and D. Steel, “An active contour model for segmenting and measuring retinal vessels,” IEEE transactions on medical imaging, vol. 28, no. 9, pp. 1488–1497, 2009. View at Google Scholar · View at Scopus
  25. K. Sun, Z. Chen, and S. Jiang, “Local morphology fitting active contour for automatic vascular segmentation,” IEEE Transactions on Biomedical Engineering, vol. 59, no. 2, pp. 464–473, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Shang, R. Deklerck, E. Nyssen et al., “Vascular active contour for vessel tree segmentation,” IEEE Transactions on Biomedical Engineering, vol. 58, no. 4, pp. 1023–1032, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Yazdanpanah, G. Hamarneh, B. R. Smith, and M. V. Sarunic, “Segmentation of intra-retinal layers from optical coherence tomography images using an active contour approach,” IEEE Transactions on Medical Imaging, vol. 30, no. 2, pp. 484–496, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. M. O. L. Espona, M. J. Carreira, and M. G. Penedo, “A snake for retinal vessel segmentation,” in Pattern Recognition and Image Analysis, vol. 4478 of Lecture Notes in Computer Science, pp. 178–185, 2007. View at Publisher · View at Google Scholar
  29. L. Espona, M. J. Carreira, M. G. Penedo, and M. Ortega, “Retinal vessel tree segmentation using a deformable contour model,” in Proceedings of the 19th International Conference on Pattern Recognition (ICPR '08), pp. 1–4, December 2008. View at Scopus
  30. Y. Zhang, W. Hsu, and M. L. Lee, “Detection of retinal blood vessels based on nonlinear projections,” Journal of Signal Processing Systems, vol. 55, no. 1–3, pp. 103–112, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. R. Malladi, J. A. Sethian, and B. C. Vemuri, “Shape modeling with front propagation: a level set approach,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 17, no. 2, pp. 158–175, 1995. View at Publisher · View at Google Scholar · View at Scopus
  32. K. W. Sum and P. Y. S. Cheung, “Vessel extraction under non-uniform illumination: a level set approach,” IEEE Transactions on Biomedical Engineering, vol. 55, no. 1, pp. 358–360, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Yu, E. S. Barriga, C. Agurto et al., “Fast localization and segmentation of optic disk in retinal images using directional matched filtering and level sets,” IEEE Transactions on Information Technology in Biomedicine, vol. 16, no. 4, pp. 644–657, 2012. View at Publisher · View at Google Scholar
  34. X. Xu, M. Niemeijer, Q. Song et al., “Vessel boundary delineation on fundus images using graph-based approach,” IEEE Transactions on Medical Imaging, vol. 30, no. 6, pp. 1184–1191, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. Zhang, M. Brady, and S. Smith, “Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm,” IEEE Transactions on Medical Imaging, vol. 20, no. 1, pp. 45–57, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. F. Forbes and N. Peyrard, “Hidden Markov random field model selection criteria based on mean field-like approximations,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 9, pp. 1089–1101, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. S. P. Chatzis and T. A. Varvarigou, “A fuzzy clustering approach toward hidden Markov random field models for enhanced spatially constrained image segmentation,” IEEE Transactions on Fuzzy Systems, vol. 16, no. 5, pp. 1351–1361, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Niemeijer and B. van Ginneken, “Digital retinal image for vessel extraction (DRIVE) database,” 2002, http://www.isi.uu.nl/Research/Databases/DRIVE/.
  39. A. Hoover, “Structured analysis of the retina (STARE) database,” http://www.parl.clemson.edu/~ahoover/stare/.
  40. W. C. K. Wong and A. C. S. Chung, “Bayesian image segmentation using local iso-intensity structural orientation,” IEEE Transactions on Image Processing, vol. 14, no. 10, pp. 1512–1523, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. T. F. Chan and L. A. Vese, “Active contours without edges,” IEEE Transactions on Image Processing, vol. 10, no. 2, pp. 266–277, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. C. Li, C. Xu, C. Gui, and M. D. Fox, “Distance regularized level set evolution and its application to image segmentation,” IEEE Transactions on Image Processing, vol. 19, no. 12, pp. 3243–3254, 2010. View at Publisher · View at Google Scholar · View at Scopus