Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2013 (2013), Article ID 430276, 13 pages
http://dx.doi.org/10.1155/2013/430276
Research Article

Investigation of Attenuation Correction for Small-Animal Single Photon Emission Computed Tomography

Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Experimental Building B306, No. 155, Section 2, Li-Nong Street, Baitou, Taipei City 112, Taiwan

Received 16 January 2013; Revised 4 May 2013; Accepted 17 May 2013

Academic Editor: Yoram Louzoun

Copyright © 2013 Hsin-Hui Lee and Jyh-Cheng Chen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The quantitative accuracy of SPECT is limited by photon attenuation and scatter effect when photons interact with atoms. In this study, we developed a new attenuation correction (AC) method, CT-based mean attenuation correction (CTMAC) method, and compared it with various methods that were often used currently to assess the AC phenomenon by using the small-animal SPECT/CT data that were acquired from various physical phantoms and a rat. The physical phantoms and an SD rat, which were injected with 99mTc, were scanned by a parallel-hole small-animal SPECT, and then they were imaged by the 80 kVp micro-CT. Scatter was estimated and corrected by the triple-energy window (TEW) method. Absolute quantification was derived from a known activity point source scan. In the physical-phantom studies, we compared the images with original, scatter correction (SC) only, and the scatter-corrected images with AC performed by using Chang’s method, CT-based attenuation correction (CTAC), CT-based iterative attenuation compensation during reconstruction (CTIACR), and the CTMAC. From the correction results, we find out that the errors of the previous six configurations are mostly quite similar. The CTMAC needs the shortest correction time while obtaining good AC results.