Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2013 (2013), Article ID 430276, 13 pages
http://dx.doi.org/10.1155/2013/430276
Research Article

Investigation of Attenuation Correction for Small-Animal Single Photon Emission Computed Tomography

Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Experimental Building B306, No. 155, Section 2, Li-Nong Street, Baitou, Taipei City 112, Taiwan

Received 16 January 2013; Revised 4 May 2013; Accepted 17 May 2013

Academic Editor: Yoram Louzoun

Copyright © 2013 Hsin-Hui Lee and Jyh-Cheng Chen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Wu, F. van der Have, B. Vastenhouw, R. A. J. O. Dierckx, A. M. J. Paans, and F. J. Beekman, “Absolute quantitative total-body small-animal SPECT with focusing pinholes,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 37, no. 11, pp. 2127–2135, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. A. B. Hwang and B. H. Hasegawa, “Attenuation correction for small animal SPECT imaging using X-ray CT data,” Medical Physics, vol. 32, no. 9, pp. 2799–2804, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. I. Ali, T. D. Ruddy, A. Almgrahi, F. G. Anstett, and R. G. Wells, “Half-time SPECT myocardial perfusion imaging with attenuation correction,” Journal of Nuclear Medicine, vol. 50, no. 4, pp. 554–562, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. T. M. Bateman and S. J. Cullom, “Attenuation correction single-photon emission computed tomography myocardial perfusion imaging,” Seminars in Nuclear Medicine, vol. 35, no. 1, pp. 37–51, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Fricke, E. Fricke, R. Weise, A. Kammeier, O. Lindner, and W. Burchert, “A method to remove artifacts in attenuation-corrected myocardial perfusion SPECT introduced by misalignment between emission scan and CT-derived attenuation maps,” Journal of Nuclear Medicine, vol. 45, no. 10, pp. 1619–1625, 2004. View at Google Scholar · View at Scopus
  6. R. Licho, S. J. Glick, W. Xia, T. Pan, B. C. Penney, and M. A. King, “Attenuation compensation in 99mTc SPECT brain imaging: a comparison of the use of attenuation maps derived from transmission versus emission data in normal scans,” Journal of Nuclear Medicine, vol. 40, no. 3, pp. 456–463, 1999. View at Google Scholar · View at Scopus
  7. K. M. Kim, A. Varrone, H. Watabe et al., “Contribution of scatter and attenuation compensation to SPECT images of nonuniformly distributed brain activities,” Journal of Nuclear Medicine, vol. 44, no. 4, pp. 512–519, 2003. View at Google Scholar · View at Scopus
  8. B. M. W. Tsui, G. T. Gullberg, E. R. Edgerton et al., “Correction of nonuniform attenuation in cardiac SPECT imaging,” Journal of Nuclear Medicine, vol. 30, no. 4, pp. 497–507, 1989. View at Google Scholar · View at Scopus
  9. D. Utsunomiya, S. Tomiguchi, S. Shiraishi et al., “Initial experience with X-ray CT based attenuation correction in myocardial perfusion SPECT imaging using a combined SPECT/CT system,” Annals of Nuclear Medicine, vol. 19, no. 6, pp. 485–489, 2005. View at Google Scholar · View at Scopus
  10. J. Hashimoto, A. Kubo, K. Ogawa et al., “Scatter and attenuation correction in technetium-99m brain SPECT,” Journal of Nuclear Medicine, vol. 38, no. 1, pp. 157–162, 1997. View at Google Scholar · View at Scopus
  11. N. Rajeevan, I. G. Zubal, S. Q. Ramsby, S. S. Zoghbi, J. Seibyl, and R. B. Innis, “Significance of nonuniform attenuation correction in quantitative brain SPECT imaging,” Journal of Nuclear Medicine, vol. 39, no. 10, pp. 1719–1726, 1998. View at Google Scholar · View at Scopus
  12. E. C. Frey, B. M. W. Tsui, and J. R. Perry, “Simultaneous acquisition of emission and transmission data for improved thallium-201 cardiac SPECT imaging using a technetium-99m transmission source,” Journal of Nuclear Medicine, vol. 33, no. 12, pp. 2238–2245, 1992. View at Google Scholar · View at Scopus
  13. R. Z. Stodilka, B. J. Kemp, F. S. Prato, and R. L. Nicholson, “Importance of bone attenuation in brain SPECT quantification,” Journal of Nuclear Medicine, vol. 39, no. 1, pp. 190–197, 1998. View at Google Scholar · View at Scopus
  14. K. Ogawa, “Image distortion and correction in single photon emission CT,” Annals of Nuclear Medicine, vol. 18, no. 3, pp. 171–185, 2004. View at Google Scholar · View at Scopus
  15. C. Burger, G. Goerres, S. Schoenes, A. Buck, A. Lonn, and G. Von Schulthess, “PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients,” European Journal of Nuclear Medicine, vol. 29, no. 7, pp. 922–927, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Bocher, A. Balan, Y. Krausz et al., “Gamma camera-mounted anatomical X-ray tomography: technology, system characteristics and first images,” European Journal of Nuclear Medicine, vol. 27, no. 6, pp. 619–627, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. J. M. Warwick, S. Rubow, M. du Toit, E. Beetge, P. Carey, and P. Dupont, “The role of CT-based attenuation correction and collimator blurring correction in striatal spect quantification,” International Journal of Molecular Imaging, vol. 2011, Article ID 195037, 9 pages, 2011. View at Publisher · View at Google Scholar
  18. H. du Raan, P. D. du Toit, A. van Aswegen et al., “Implementation of a Tc-99m and Ce-139 scanning line source for attenuation correction in SPECT using a dual opposing detector scintillation camera,” Medical Physics, vol. 27, no. 7, pp. 1523–1534, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. J. A. Patton and T. G. Turkington, “SPECT/CT physical principles and attenuation correction,” Journal of Nuclear Medicine Technology, vol. 36, no. 1, pp. 1–10, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. O. Schillaci, “Hybrid SPECT/CT: a new era for SPECT imaging?” European Journal of Nuclear Medicine and Molecular Imaging, vol. 32, no. 5, pp. 521–524, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Seo, K. H. Wong, M. Sun, B. L. Franc, R. A. Hawkins, and B. H. Hasegawa, “Correction of photon attenuation and collimator response for a body-contouring SPECT/CT imaging system,” Journal of Nuclear Medicine, vol. 46, no. 5, pp. 868–877, 2005. View at Google Scholar · View at Scopus
  22. T. Ichihara, K. Ogawa, N. Motomura, A. Kubo, and S. Hashimoto, “Compton scatter compensation using the triple-energy window method for single- and dual-isotope SPECT,” Journal of Nuclear Medicine, vol. 34, no. 12, pp. 2216–2221, 1993. View at Google Scholar · View at Scopus
  23. H. Kim, L. R. Furenlid, M. J. Crawford et al., “SemiSPECT: a small-animal single-photon emission computed tomography (SPECT) imager based on eight cadmium zinc telluride (CZT) detector arrays,” Medical Physics, vol. 33, no. 2, pp. 465–474, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Brown, D. L. Bailey, K. Willowson, and C. Baldock, “Investigation of the relationship between linear attenuation coefficients and CT Hounsfield units using radionuclides for SPECT,” Applied Radiation and Isotopes, vol. 66, no. 9, pp. 1206–1212, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. M. J. Berger, J. Hubbell, S. Seltzer et al., “XCOM: photon cross sections database,” NIST Standard Reference Database, vol. 8, pp. 87–3597, 1998. View at Google Scholar
  26. J. Hubbell and S. Seltzer, Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients (Version 1.4), National Institute of Standards and Technology, Gaithersburg, Md, USA, 2004.
  27. J. P. J. Carney, D. W. Townsend, V. Rappoport, and B. Bendriem, “Method for transforming CT images for attenuation correction in PET/CT imaging,” Medical Physics, vol. 33, no. 4, pp. 976–983, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Vanhove, M. Defrise, A. Bossuyt, and T. Lahoutte, “Improved quantification in single-pinhole and multiple-pinhole SPECT using micro-CT information,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 36, no. 7, pp. 1049–1063, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. K. F. Koral and Y. Dewaraja, “I-131 SPECT activity recovery coefficients with implicit or triple-energy-window scatter correction,” Nuclear Instruments and Methods in Physics Research, Section A, vol. 422, no. 1–3, pp. 688–692, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. L. Chang, “A method for attenuation correction in radionuclide computed tomography,” IEEE Transactions on Nuclear Science, vol. 25, no. 1, pp. 638–643, 1977. View at Google Scholar · View at Scopus
  31. N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 9, no. 1, pp. 62–66, 1979. View at Google Scholar · View at Scopus
  32. D. R. Gilland, B. M. W. Tsui, C. E. Metz, R. J. Jaszczak, and J. R. Perry, “An evaluation of maximum likelihood-expectation maximization reconstruction for SPECT by ROC analysis,” Journal of Nuclear Medicine, vol. 33, no. 3, pp. 451–457, 1992. View at Google Scholar · View at Scopus
  33. B. H. Hasegawa, K. H. Wong, K. Iwata et al., “Dual-modality imaging of cancer with SPECT/CT,” Technology in Cancer Research and Treatment, vol. 1, no. 6, pp. 449–458, 2002. View at Google Scholar · View at Scopus
  34. C. Vanhove, M. Defrise, P. R. Franken, H. Everaert, F. Deconinck, and A. Bossuyt, “Interest of the ordered subsets expectation maximization (OS-EM) algorithm in pinhole single-photon emission tomography reconstruction: a phantom study,” European Journal of Nuclear Medicine, vol. 27, no. 2, pp. 140–146, 2000. View at Google Scholar · View at Scopus
  35. R. Prasad, M. R. Ay, O. Ratib, and H. Zaidi, “CT-based attenuation correction on the FLEX triumph preclinical PET/CT scanner,” IEEE Transactions on Nuclear Science, vol. 58, no. 1, pp. 66–75, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. A. B. Hwang, B. L. Franc, G. T. Gullberg, and B. H. Hasegawa, “Assessment of the sources of error affecting the quantitative accuracy of SPECT imaging in small animals,” Physics in Medicine and Biology, vol. 53, no. 9, pp. 2233–2252, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. S. R. Cherry, J. A. Sorenson, and M. E. Phelps, Physics in Nuclear Medicine, Saunders, 2003.