Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2013, Article ID 467428, 8 pages
http://dx.doi.org/10.1155/2013/467428
Research Article

The MATCHIT Automaton: Exploiting Compartmentalization for the Synthesis of Branched Polymers

1European Centre for Living Technology, S. Marco 2940, 30124 Venice, Italy
2Center for Fundamental Living Technology (FLinT), Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense, Denmark
3Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
4The Lancet Lab, Department of Molecular Genetics, Weizmann Institute of Science, 76100 Rehovot, Israel
5Santa Fe Institute, Santa Fe, NM 87501, USA
6Institute of Applied Mathematics and Physics, School of Engineering, Zurich University of Applied Sciences, 8401 Winterthur, Switzerland

Received 31 October 2013; Accepted 8 December 2013

Academic Editor: Roberto Serra

Copyright © 2013 Mathias S. Weyland et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. MATCHIT Matrix for Chemical IT, http://fp7-matchit.eu.
  2. M. Amos, P. Dittrich, J. McCaskill, and S. Rasmussen, “Biological and chemical information technologies,” in Proceedings of the 2nd European Future Technologies Conference and Exhibition (FET '11), vol. 7, pp. 56–60, May 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. M. D. Symes, P. J. Kitson, J. Yan et al., “Integrated 3D-printed reactionware for chemical synthesis and analysis,” Nature Chemistry, vol. 4, no. 5, pp. 349–354, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. G. Villar, A. D. Graham, and H. Bayley, “A tissue-like printed material,” Science, vol. 340, no. 6128, pp. 48–52, 2013. View at Google Scholar
  5. G. Seelig, D. Soloveichik, D. Y. Zhang, and E. Winfree, “Enzyme-free nucleic acid logic circuits,” Science, vol. 314, no. 5805, pp. 1585–1588, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Y. Zhang and E. Winfree, “Control of DNA strand displacement kinetics using toehold exchange,” Journal of the American Chemical Society, vol. 131, no. 47, pp. 17303–17314, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Qian and E. Winfree, “Scaling up digital circuit computation with DNA strand displacement cascades,” Science, vol. 332, no. 6034, pp. 1196–1201, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. D. van Swaay and A. deMello, “Microuidic methods for forming liposomes,” Lab on a Chip, vol. 13, no. 5, pp. 752–767, 2013. View at Publisher · View at Google Scholar
  9. M. Hadorn and P. Eggenberger Hotz, “DNA-mediated self-assembly of artificial vesicles,” PloS ONE, vol. 5, no. 3, article e9886, 2010. View at Google Scholar · View at Scopus
  10. M. Hadorn, E. Boenzli, K. T. Sffrensen, H. Fellermann, P. E. Hotz, and M. M. Hanczyc, “Speciffc and reversible DNA directed self-assembly of oil-in-water emulsion droplets,” Proceedings of the National Academy of Sciences, vol. 109, no. 50, pp. 20320–20325, 2012. View at Google Scholar
  11. F. Caschera, S. Rasmussen, and M. M. Hanczyc, “An oil droplet division-fusion cycle,” ChemPlusChem, vol. 78, no. 1, pp. 52–54, 2013. View at Google Scholar
  12. T. Sunami, F. Caschera, Y. Morita et al., “Detection of association and fusion of giant vesicles using a fluorescence-activated cell sorter,” Langmuir, vol. 26, no. 19, pp. 15098–15103, 2010. View at Google Scholar · View at Scopus
  13. F. Caschera, T. Sunami, T. Matsuura, H. Suzuki, M. M. Hanczyc, and T. Yomo, “Programmed vesicle fusion triggers gene expression,” Langmuir, vol. 27, no. 21, pp. 13082–13090, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Hadorn, E. Boenzli, P. E. Hotz, and M. M. Hanczyc, “Hierarchical unilamellar vesicles of controlled compositional heterogeneity,” PloS One, vol. 7, no. 11, article e50156, 2012. View at Google Scholar
  15. P. F. Wagler, U. Tangen, T. Maeke, and J. S. McCaskill, “Field programmable chemistry: integrated chemical and electronic processing of informational molecules towards electronic chemical cells,” BioSystems, vol. 109, no. 1, pp. 2–17, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. R. D. Cummings, “The repertoire of glycan determinants in the human glycome,” Molecular BioSystems, vol. 5, no. 10, pp. 1087–1104, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Varki, “Biological roles of oligosaccharides: all of the theories are correct,” Glycobiology, vol. 3, no. 2, pp. 97–130, 1993. View at Google Scholar · View at Scopus
  18. K. M. Koeller and C.-H. Wong, “Complex carbohydrate synthesis tools for glycobiologists: enzyme-based approach and programmable one-pot strategies,” Glycobiology, vol. 10, no. 11, pp. 1157–1169, 2000. View at Google Scholar · View at Scopus
  19. H. C. Kolb, M. G. Finn, and K. B. Sharpless, “Click chemistry: diverse chemical function from a few good reactions,” Angewandte Chemie—International Edition, vol. 40, no. 11, pp. 2004–2021, 2001. View at Google Scholar
  20. H. C. Kolb and K. B. Sharpless, “The growing impact of click chemistry on drug discovery,” Drug Discovery Today, vol. 8, no. 24, pp. 1128–1137, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. M. D. Best, “Click chemistry and bioorthogonal reactions: unprecedented selectivity in the labeling of biological molecules,” Biochemistry, vol. 48, no. 28, pp. 6571–6584, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. R. M. Füchslin, A. Dzyakanchuk, D. Flumini et al., “Morphological computation and morphological control: steps toward a formal theory and applications,” Artiffcial Life, vol. 19, no. 1, pp. 9–34, 2013. View at Google Scholar
  23. P. Dittrich, J. Ziegler, and W. Banzhaf, “Artificial chemistries—a review,” Artificial Life, vol. 7, no. 3, pp. 225–275, 2001. View at Google Scholar · View at Scopus
  24. COBRA Project: EU FP7 project, http://www.cobra-project.eu.