Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2013, Article ID 547897, 6 pages
http://dx.doi.org/10.1155/2013/547897
Research Article

Esophagus Segmentation from 3D CT Data Using Skeleton Prior-Based Graph Cut

1Université de Rouen, LITIS EA 4108, 22 Boulevard Gambetta, 76183 Rouen Cedex, France
2Centre Henri Becquerel, rue d'Amiens, 76038 Rouen Cedex 1, France

Received 14 May 2013; Accepted 30 July 2013

Academic Editor: Liang Li

Copyright © 2013 Damien Grosgeorge et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Rousson, Y. Bai, C. Xu, and F. Sauer, “Probabilistic minimal path for automated esophagus segmentation,” in Medical Imaging: Image Processing, vol. 6144 of Proceedings of the SPIE, pp. 49–51, February 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. D. Ragan, G. Starkschall, T. McNutt, M. Kaus, T. Guerrero, and C. W. Stevens, “Semiautomated four-dimensional computed tomography segmentation using deformable models,” Medical Physics, vol. 32, no. 7, pp. 2254–2261, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. T.-C. Huang, G. Zhang, T. Guerrero, G. Starkschall, K.-P. Lin, and K. Forster, “Semi-automated CT segmentation using optic flow and Fourier interpolation techniques,” Computer Methods and Programs in Biomedicine, vol. 84, no. 2-3, pp. 124–134, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Fieselmann, S. Lautenschläger, F. Deinzer, M. John, and B. Poppe, “Esophagus segmentation by spatially-constrained shape interpolation,” in Bildverarbeitung für die Medizin, pp. 247–251, Springer, Berlin, Germany, 2008. View at Google Scholar
  5. J. Feulner, S. Zhou, A. Cavallaro, S. Seifert, J. Hornegger, and D. Comaniciu, “Fast automatic segmentation of the esophagus from 3d ct data using a probabilistic model,” in Proceedings of the Medical Image Computing and Computer-Assisted Intervention (MICCAI '09), pp. 255–262, 2009.
  6. Y. Y. Boykov and M.-P. Jolly, “Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images,” in Proceedings of the 8th International Conference on Computer Vision, pp. 105–112, July 2001. View at Scopus
  7. Y. Boykov and V. Kolmogorov, “An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 9, pp. 1124–1137, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham, “Active shape models—their training and application,” Computer Vision and Image Understanding, vol. 61, no. 1, pp. 38–59, 1995. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Tsai, A. Yezzi Jr., W. Wells et al., “A shape-based approach to the segmentation of medical imagery using level sets,” IEEE Transactions on Medical Imaging, vol. 22, no. 2, pp. 137–154, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. Z. Song, N. Tustison, B. Avants, and J. Gee, “Adaptive graph cuts with tissue priors for brain MRI segmentation,” in Proceedings of the 3rd IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 762–765, April 2006. View at Scopus
  11. D. Freedman and T. Zhang, “Interactive graph cut based segmentation with shape priors,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '05), vol. 1, pp. 755–762, June 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. I. Corouge, S. Gouttard, and G. Gerig, “Towards a shape model of white matter fiber bundles using diffusion tensor MRI,” in Proceedings of the 2nd IEEE International Symposium on Biomedical Imaging: Macro to Nano, pp. 344–347, April 2004. View at Scopus
  13. R. Saboo, J. Levy, E. Chaney, and S. Pizer, “Medial models of populations of nearly tubular objects,” in Proceedings of the Probabilistic Models for Medical Image Analysis (MICCAI '09), 2009.