Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2013 (2013), Article ID 570878, 7 pages
http://dx.doi.org/10.1155/2013/570878
Research Article

Theoretical Hill-Type Muscle and Stability: Numerical Model and Application

1Department of Sports and Exercise Science, University of Stuttgart, Allmandring 28, 70569 Stuttgart, Germany
2Stuttgart Research Centre for Simulation Technology, University of Stuttgart, Pfaffenwaldring 5a, 70569 Stuttgart, Germany
3Institute of Sports Science, Science of Motion, University of Jena, Seidelstraß 20, 07749 Jena, Germany

Received 19 July 2013; Accepted 19 September 2013

Academic Editor: Zhonghua Sun

Copyright © 2013 S. Schmitt et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. F. Huxley, “Muscle structure and theories of contraction,” Progress in Biophysics and Biophysical Chemistry, vol. 7, pp. 255–318, 1957. View at Google Scholar · View at Scopus
  2. A. F. Huxley, “Mechanics and models of the myosin motor,” Philosophical Transactions of the Royal Society B, vol. 355, no. 1396, pp. 433–440, 2000. View at Google Scholar · View at Scopus
  3. H. E. Huxley, “Fifty years of muscle and the sliding filament hypothesis,” European Journal of Biochemistry, vol. 271, no. 8, pp. 1403–1415, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. V. Lombardi, G. Piazzesi, M. A. Ferenczi, H. Thirlwell, I. Dobbie, and M. Irving, “Elastic distortion of myosin heads and repriming of the working stroke in muscle,” Nature, vol. 374, no. 6522, pp. 553–555, 1995. View at Google Scholar · View at Scopus
  5. V. Lombardi, G. Piazzesi, M. Reconditi et al., “X-ray diffraction studies of the contractile mechanism in single muscle fibres,” Philosophical Transactions of the Royal Society B, vol. 359, no. 1452, pp. 1883–1893, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Piazzesi and V. Lombardi, “A cross-bridge model that is able to explain mechanical and energetic properties of shortening muscle,” Biophysical Journal, vol. 68, no. 5, pp. 1966–1979, 1995. View at Google Scholar · View at Scopus
  7. M. Reconditi, M. Linari, L. Lucii et al., “The myosin motor in muscle generates a smaller and slower working stroke at higher load,” Nature, vol. 428, no. 6982, pp. 578–581, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. I. A. Telley, J. Denoth, and K. W. Ranatunga, “Inter-sarcomere dynamics in muscle fibres: a neglected subject?” Advances in Experimental Medicine and Biology, vol. 538, pp. 481–500, 2004. View at Google Scholar · View at Scopus
  9. L. Tskhovrebova and J. Trinick, “Role of titin in vertebrate striated muscle,” Philosophical Transactions of the Royal Society B, vol. 357, no. 1418, pp. 199–206, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. R. H. Baughman, “Materials science. Playing nature's game with artificial muscles,” Science, vol. 308, no. 5718, pp. 63–65, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Günther and S. Schmitt, “A macroscopic ansatz to deduce the Hill relation,” Journal of Theoretical Biology, vol. 263, no. 4, pp. 407–418, 2010. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  12. D. F. B. Häufle, M. Günther, R. Blickhan, and S. Schmitt, “Proof of concept of an artificial muscle: theoretical model, numerical model, and hardware experiment,” in Proceedings of International Conference of Rehabilitation Robotics (ICORR '11), pp. 1–6, July 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. D. F. Häufle, M. Günther, R. Blickhan, and S. Schmitt, “Can quick release experiments reveal the muscle structure? A bionic approach,” Journal of Bionic Engineering, vol. 9, no. 2, pp. 211–223, 2012. View at Publisher · View at Google Scholar
  14. D. F. Häufle, M. Günther, R. Blickhan, and S. Schmitt, “Proof of concept: model based bionic muscle with hyperbolic force-velocity relation,” Applied Bionics and Biomechanics, pp. 1–7, 2012. View at Google Scholar
  15. S. Schmitt, D. F. Häufle, R. Blickhan, and M. Günther, “Nature as an engineer: one simple concept of a bio-inspired functional artificial muscle,” Bioinspiration & Biomimetics, vol. 7, Article ID 036022, 2012. View at Google Scholar
  16. A. V. Hill, “The heat of shortening and the dynamic constants of muscle,” Proceedings of the Royal Society of London. Series B, vol. 126, pp. 136–195, 1938. View at Google Scholar
  17. M. Günther, S. Schmitt, and V. Wank, “High-frequency oscillations as a consequence of neglected serial damping in Hill-type muscle models,” Biological Cybernetics, vol. 97, no. 1, pp. 63–79, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. G. K. Cole, T. van den Bogert, W. Herzog, and K. Gerritsen, “Modelling of force production in skeletal muscle undergoing stretch,” Journal of Biomechanics, vol. 29, pp. 1091–1104, 1996. View at Google Scholar
  19. G. K. Klute, J. M. Czerniecki, and B. Hannaford, “Artificial muscles: actuators for biorobotic systems,” International Journal of Robotics Research, vol. 21, no. 4, pp. 295–309, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. J. P. van Zandwijk, M. F. Bobbert, G. C. Baan, and P. A. Huijing, “From twitch to tetanus: performance of excitation dynamics optimized for a twitch in predicting tetanic muscle forces,” Biological Cybernetics, vol. 75, no. 5, pp. 409–417, 1996. View at Google Scholar · View at Scopus
  21. M. Günther and H. Ruder, “Synthesis of two-dimensional human walking: a test of the λ-model,” Biological Cybernetics, vol. 89, no. 2, pp. 89–106, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. J. D. Madden, “Mobile robots: motor challenges and materials solutions,” Science, vol. 318, no. 5853, pp. 1094–1097, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. E. Garcia, J. C. Arevalo, G. Muoz, and P. Gonzalez-De-Santos, “Combining series elastic actuation and magneto-rheological damping for the control of agile locomotion,” Robotics and Autonomous Systems, vol. 59, no. 10, pp. 827–839, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. A. F. Huxley, “A note suggesting that the cross bridge attachment during muscle contraction may take place in two stages,” Proceedings of the Royal Society of London. Series B, vol. 183, no. 1070, pp. 83–86, 1973. View at Google Scholar · View at Scopus
  25. E. Bizzi, N. Hogan, F. A. Mussa-Ivaldi, and S. Giszter, “Does the nervous sytem use equilibriumpoint control to guide single and multiple joint movements?” Behavioral and Brain Sciences, vol. 15, pp. 603–613, 1992. View at Google Scholar
  26. A. G. Fel'dman, “Functional tuning of the nervous system with control of movement or maintenance of a steady posture-II. Controllable parameters of the muscles,” Biophysics, vol. 11, no. 3, pp. 565–578, 1966. View at Google Scholar · View at Scopus
  27. J. Pratt, C.-M. Chew, A. Torres, P. Dilworth, and G. Pratt, “Virtual model control: an intuitive approach for bipedal locomotion,” International Journal of Robotics Research, vol. 20, no. 2, pp. 129–143, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. M. F. Eilenberg, H. Geyer, and H. Herr, “Control of a powered ankle-foot prosthesis based on a neuromuscular model,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 18, no. 2, pp. 164–173, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. A. S. Ghafari, A. Meghdari, and G. Vossoughi, “Feedback control of the neuromusculoskeletal system in a forward dynamics simulation of stair locomotion,” Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol. 223, no. 6, pp. 663–675, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. D. A. Kistemaker, A. J. Van Soest, and M. F. Bobbert, “A model of open-loop control of equilibrium position and stiffness of the human elbow joint,” Biological Cybernetics, vol. 96, no. 3, pp. 341–350, 2007. View at Publisher · View at Google Scholar · View at Scopus