Review Article

Uses of Phage Display in Agriculture: A Review of Food-Related Protein-Protein Interactions Discovered by Biopanning over Diverse Baits

Figure 2

Those proteins essential to translation are the proteome’s “Achilles’ heel” for seed longevity. In the imbibed seed, there are three means by which functional proteins can be recruited into the newly reestablished, active metabolism. The proteins may be part of (1) the stored proteome that has survived maturation desiccation and subsequent rehydration with their function intact. New protein can be translated from either (2) the stored transcriptome consisting of mRNA, produced during seed maturation, that survived maturation desiccation/rehydration or (3) de novo transcribed mRNA. Only those proteins essential to translation must be present in the stored proteome, sufficiently numerous and in an active state following imbibition, to carry out translation (probably with an emphasis on self-replacement) if the embryo is to survive. Various classes of proteins are color coded according to their function (red: transcription/nuclear organization; light blue: House-keeping/metabolism; dark blue: organelles; purple: translation). The proteins essential to translation are depicted decorating the ribosome in the cytosol, or in those organelles with their own genomes. The dysfunction of the proteins essential for translation has been emphasized by their partial transparency and an “X” through the molecule representing this class in the stored proteome. A lack of translation results in the eventual demise of the entire proteome over time (partially transparent functional proteome).
653759.fig.002