Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2013, Article ID 796387, 17 pages
http://dx.doi.org/10.1155/2013/796387
Research Article

Development of an Expert System as a Diagnostic Support of Cervical Cancer in Atypical Glandular Cells, Based on Fuzzy Logics and Image Interpretation

1Instituto Tecnológico de Orizaba, Avenida Oriente 9 No. 852, Colonia Emiliano Zapata, 94320 Orizaba, VER, Mexico
2Hospital Regional de Río Blanco, Entronque Autopista Orizaba-Puebla km 2, 94735 Río Blanco, VER, Mexico

Received 26 October 2012; Revised 16 January 2013; Accepted 17 February 2013

Academic Editor: Alejandro Rodríguez González

Copyright © 2013 Karem R. Domínguez Hernández et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. OMS Cáncer, Diciembre, 2011 http://www.who.int/mediacentre/factsheets/fs297/es/index.html/.
  2. D. Solomon and R. Nayar, “El Sistema de Bethesda para informar la citología cervical,” Buenos Aires, vol. 37, no. 3, 2005. View at Google Scholar
  3. http://onlinelibrary.wiley.com/doi/10.3322/caac.20107/pdf.
  4. F. Serman, Cancer Cervicouterino: Epidemiologia, Historia Natural y rol del Virus Papiloma Humano: Perspectivas en prevención y tratamiento, Revista chilena de obstetricia y ginecología, 2002.
  5. SSA, Programa De Acción, Cáncer cérvico uterino, 2006.
  6. F. Meneses-González, M. Cos-Arroyo, and R. Tapia-Coger, Prevalencia de uso de la Prueba de Papanicolau en Mujeres de 15 a 49 Años en México, Revista Instituto Nacional de Cancerología, Mexico, México, 1999.
  7. G. B. Kande, P. V. Subbaiah, and T. S. Savithri, “Unsupervised fuzzy based vessel segmentation in pathological digital fundus images,” Journal of Medical Systems, vol. 34, no. 5, pp. 849–858, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. H. S. Shin, C. Lee, and M. Lee, “Ideal filtering approach on DCT domain for biomedical signals: index blocked DCT filtering method (IB-DCTFM),” Journal of Medical Systems, vol. 34, no. 4, pp. 741–753, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Thomas, “Apport de l'imagerie dans la planification radiothérapique des cancers du col utérin,” Cancer/Radiothérapie, vol. 4, no. 2, pp. 127–132, 2000. View at Publisher · View at Google Scholar
  10. NOM 014-SSA2, para la prevención, detección, diagnóstico, tratamiento, control y vigilancia, 1994.
  11. L. Deligdisch, C. R. De Resende Miranda, H. S. Wu, and J. Gil, “Human papillomavirus-related cervical lesions in adolescents: a histologic and morphometric study,” Gynecologic Oncology, vol. 89, no. 1, pp. 52–59, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. C. H. S. Torres, M. P. A. Aragón, and L. O. Aristizabal, Papilomavirus y Factores asociados a Neoplasm Intraepitelial Cervical de Alto Grado en Cauca, Colombia, Revista de Salud Pública, Bogotá, Colombia, 2006.
  13. K. M. Arcos, “Identificacion de celulas displasicas en el epitelio vaginal,” Umbral Científico, no. 9, pp. 104–114, 2006. View at Google Scholar
  14. F. R. Machorro, Identificación de Lesiones de Cáncer Cérvico Uterino Mediante Tratamiento de Imágenes y Lógica Difusa, Tesis de grado. Instituto Tecnológico de Orizaba, 2010.
  15. M. H. F. Zarandi, M. Zarinbal, and M. Izadi, “Systematic image processing for diagnosing brain tumors: a Type-II fuzzy expert system approach,” Applied Soft Computing Journal, vol. 11, no. 1, pp. 285–294, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. L. T. Tan, “Implementation of image-guided brachytherapy for cervix cancer in the UK: progress update,” Journal of Medical Systems, vol. 23, no. 10, pp. 681–684, 2011. View at Google Scholar
  17. P. Petric, J. Dimopoulos, C. Kirisits, D. Berger, R. Hudej, and R. Pötter, “Inter- and intraobserver variation in HR-CTV contouring: intercomparison of transverse and paratransverse image orientation in 3D-MRI assisted cervix cancer brachytherapy,” Radiotherapy and Oncology, vol. 89, no. 2, pp. 164–171, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. G. B. Kande, P. V. Subbaiah, and T. S. Savithri, “Unsupervised fuzzy based vessel segmentation in pathological digital fundus images,” Journal of Medical Systems, vol. 34, no. 5, pp. 849–858, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. H. S. Shin, C. Lee, and M. Lee, “Ideal filtering approach on DCT domain for biomedical signals: index blocked DCT filtering method (IB-DCTFM),” Journal of Medical Systems, vol. 34, no. 4, pp. 741–753, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Rogel, A. Belot, F. Suzan et al., “Reliability of recording uterine cancer in death certification in France and age-specific proportions of deaths from cervix and corpus uteri,” Cancer Epidemiology, vol. 35, no. 3, pp. 243–249, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. D. Zwahlen, J. Jezioranski, P. Chan et al., “Magnetic resonance imaging-guided intracavitary brachytherapy for cancer of the cervix,” International Journal of Radiation Oncology Biology Physics, vol. 74, no. 4, pp. 1157–1164, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Gordona, S. Lotenberga, R. Longb, S. Antanib, J. Jeronimoc, and H. Greenspana, “Evaluation of uterine cervix segmentations using ground truth from multiple experts,” Journal of Medical Systems, vol. 33, no. 3, pp. 205–216, 2009. View at Publisher · View at Google Scholar
  23. Z. Xue, L. R. Long, S. Antani, L. Neve, Y. Zhu, and G. R. Thoma, “A unified set of analysis tools for uterine cervix image segmentation,” Computerized Medical Imaging and Graphics, vol. 34, no. 8, pp. 593–604, 2010. View at Publisher · View at Google Scholar · View at Scopus