Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2013, Article ID 802512, 8 pages
http://dx.doi.org/10.1155/2013/802512
Research Article

In Vivo Imaging-Based Mathematical Modeling Techniques That Enhance the Understanding of Oncogene Addiction in relation to Tumor Growth

1Department of Electrical Engineering, Stanford University School of Medicine, Stanford, CA 94305, USA
2Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
3Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA

Received 21 December 2012; Accepted 15 February 2013

Academic Editor: Kumar Durai

Copyright © 2013 Chinyere Nwabugwu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. B. Weinstein, M. Begemann, P. Zhou et al., “Disorders in cell circuitry associated with multistage carcinogenesis: exploitable targets for cancer prevention and therapy,” Clinical Cancer Research, vol. 3, no. 12, pp. 2696–2702, 1997. View at Google Scholar · View at Scopus
  2. G. D. Demetri, “Identification and treatment of chemoresistant inoperable or metastatic GIST: experience with the selective tyrosine kinase inhibitor imatinib mesylate (STI571),” European Journal of Cancer, vol. 38, pp. S52, supplement–S59, 2002. View at Google Scholar · View at Scopus
  3. B. J. Druker, M. Talpaz, D. J. Resta et al., “Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia,” New England Journal of Medicine, vol. 344, no. 14, pp. 1031–1037, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Kantarjian, C. Sawyers, A. Hochhaus et al., “Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia,” New England Journal of Medicine, vol. 346, no. 9, pp. 645–652, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. E. Weisberg, P. W. Manley, W. Breitenstein et al., “Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl,” Cancer Cell, vol. 7, pp. 129–141, 2005. View at Google Scholar
  6. F. A. Shepherd, J. R. Pereira, T. Ciuleanu et al., “Erlotinib in previously treated non-small-cell lung cancer,” New England Journal of Medicine, vol. 353, no. 2, pp. 123–132, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. M. G. Kris, R. B. Natale, R. S. Herbst et al., “Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial,” Journal of the American Medical Association, vol. 290, no. 16, pp. 2149–2158, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Giaccone, “Epidermal growth factor receptor inhibitors in the treatment of non-small-cell lung cancer,” Journal of Clinical Oncology, vol. 23, no. 14, pp. 3235–3242, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. R. S. Herbst, M. Fukuoka, and J. Baselga, “Gefitinib—a novel targeted approach to treating cancer,” Nature Reviews Cancer, vol. 4, no. 12, pp. 956–965, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. P. T. Tran, P. K. Bendapudi, H. J. Lin et al., “Survival and death signals can predict tumor response to therapy after oncogene inactivation,” Science Translational Medicine, vol. 3, p. 103ra99, 2011. View at Google Scholar
  11. M. Gossen and H. Bujard, “Tight control of gene expression in mammalian cells by tetracycline- responsive promoters,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 12, pp. 5547–5551, 1992. View at Publisher · View at Google Scholar · View at Scopus
  12. P. A. Furth, L. S. Onge, H. Boger et al., “Temporal control of gene expression in transgenic mice by a tetracycline- responsive promoter,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 20, pp. 9302–9306, 1994. View at Google Scholar · View at Scopus
  13. C. Arvanitis and D. W. Felsher, “Conditional transgenic models define how MYC initiates and maintains tumorigenesis,” Seminars in Cancer Biology, vol. 16, no. 4, pp. 313–317, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. C. M. Shachaf, A. J. Gentles, S. Elchuri et al., “Genomic and proteomic analysis reveals a threshold level of MYC required for tumor maintenance,” Cancer Research, vol. 68, no. 13, pp. 5132–5142, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. D. W. Felsher and J. M. Bishop, “Reversible tumorigenesis by MYC in hematopoietic lineages,” Molecular Cell, vol. 4, no. 2, pp. 199–207, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Marinkovic, T. Marinkovic, B. Mahr, J. Hess, and T. Wirth, “Reversible lymphomagenesis in conditionally c-MYC expressing mice,” International Journal of Cancer, vol. 110, no. 3, pp. 336–342, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. P. S. Choi, J. van Riggelen, and A. J. Gentles, “Lymphomas that recur after MYC suppression continue to exhibit oncogene addiction,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, pp. 17432–17437, 2011. View at Google Scholar
  18. C. Arvanitis, P. K. Bendapudi, J. R. Tseng, S. S. Gambhir, and D. W. Felsher, “18F and18FDG PET imaging of osteosarcoma to non-invasively monitor in situ changes in cellular proliferation and bone differentiation upon MYC inactivation,” Cancer Biology and Therapy, vol. 7, no. 12, pp. 1947–1951, 2008. View at Google Scholar · View at Scopus
  19. M. Jain, C. Arvanitis, K. Chu et al., “Sustained loss of a neoplastic phenotype by brief inactivation of MYC,” Science, vol. 297, no. 5578, pp. 102–104, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Beer, A. Zetterberg, R. A. Ihrie et al., “Developmental context determines latency of MYC-induced tumorigenesis,” PLoS Biology, vol. 2, no. 11, article e332, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. R. B. Boxer, J. W. Jang, L. Sintasath, and L. A. Chodosh, “Lack of sustained regression of c-MYC-induced mammary adenocarcinomas following brief or prolonged MYC inactivation,” Cancer Cell, vol. 6, no. 6, pp. 577–586, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. J. A. Aguirre-Ghiso, “Models, mechanisms and clinical evidence for cancer dormancy,” Nature Reviews Cancer, vol. 7, no. 11, pp. 834–846, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. C. M. Shachaf and D. W. Felsher, “Tumor dormancy and MYC inactivation: pushing cancer to the brink of normalcy,” Cancer Research, vol. 65, no. 11, pp. 4471–4474, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. C. H. Wu, J. Van Riggelen, A. Yetil, A. C. Fan, P. Bachireddy, and D. W. Felsher, “Cellular senescence is an important mechanism of tumor regression upon c-Myc inactivation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 32, pp. 13028–13033, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Kazerounian, K. O. Yee, and J. Lawler, “Thrombospondins: from structure to therapeutics—thrombospondins in cancer,” Cellular and Molecular Life Sciences, vol. 65, no. 5, pp. 700–712, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Giuriato, S. Ryeom, A. C. Fan et al., “Sustained regression of tumors upon MYC inactivation requires p53 or thrombospondin-1 to reverse the angiogenic switch,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 44, pp. 16266–16271, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. K. Rakhra, P. Bachireddy, T. Zabuawala et al., “CD4+ T cells contribute to the remodeling of the microenvironment required for sustained tumor regression upon oncogene inactivation,” Cancer Cell, vol. 18, pp. 485–498, 2010. View at Google Scholar
  28. A. Corthay, D. K. Skovseth, K. U. Lundin et al., “Primary antitumor immune response mediated by CD4+ T cells,” Immunity, vol. 22, no. 3, pp. 371–383, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. D. W. Felsher, “Tomur Dormancy: death and resurrection of cancer as seen through transgenic mouse models,” Cell Cycle, vol. 5, no. 16, pp. 1808–1811, 2006. View at Google Scholar · View at Scopus
  30. K. D. Robertson and P. A. Jones, “DNA methylation: past, present and future directions,” Carcinogenesis, vol. 21, no. 3, pp. 461–467, 2000. View at Google Scholar · View at Scopus
  31. R. Shanmuganathan, N. B. Basheer, L. Amirthalingam, H. Muthukumar, R. Kaliaperumal, and K. Shanmugam, “Conventional and nanotechniques for DNA methylation profiling,” Journal of Molecular Diagnostics, vol. 15, pp. 17–26, 2013. View at Google Scholar
  32. Z. Qin and T. Blankenstein, “CD4+ T cell-mediated tumor rejection involves inhibition of angiogenesis that is dependent on IFNγ receptor expression by nonhematopoietic cells,” Immunity, vol. 12, no. 6, pp. 677–686, 2000. View at Google Scholar · View at Scopus
  33. N. Bercovici and A. Trautmann, “Revisiting the role of T cells in tumor regression,” Oncoimmunology, vol. 1, pp. 346–350, 2012. View at Google Scholar
  34. C. V. Ngo, M. Gee, N. Akhtar et al., “An in vivo function for the transforming Myc protein: elicitation of the angiogenic phenotype,” Cell Growth and Differentiation, vol. 11, no. 4, pp. 201–210, 2000. View at Google Scholar · View at Scopus
  35. M. D. Johnston, C. M. Edwards, W. F. Bodmer, P. K. Maini, and S. J. Chapman, “Mathematical modeling of cell population dynamics in the colonic crypt and in colorectal cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 10, pp. 4008–4013, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. R. Ganguly and I. K. Puri, “Mathematical model for the cancer stem cell hypothesis,” Cell Proliferation, vol. 39, no. 1, pp. 3–14, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. R. Eftimie, J. L. Bramson, and D. J. D. Earn, “Interactions between the immune system and cancer: a brief review of non-spatial mathematical models,” Bulletin of Mathematical Biology, vol. 73, no. 1, pp. 2–32, 2011. View at Publisher · View at Google Scholar · View at Scopus