Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2013, Article ID 902470, 10 pages
http://dx.doi.org/10.1155/2013/902470
Research Article

Nonrigid 3D Medical Image Registration and Fusion Based on Deformable Models

1Department of Radiotherapy, Universitätsklinikum Essen, Hufelandstraße 55, 45147 Essen, Germany
2Department for Radiology and Nuclear Medicine, Universitätsklinikum Magdeburg, Leipziger Straße 44, 39120 Magdeburg, Germany

Received 18 January 2013; Accepted 26 March 2013

Academic Editor: Kumar Durai

Copyright © 2013 Peng Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Wybranski, M. Seidensticker, K. Mohnike et al., “In vivo assessment of dose volume and dose gradient effects on the tolerance dose of small liver volumes after single-fraction high-dose-rate 192Ir irradiation,” Radiation Research, vol. 172, no. 5, pp. 598–606, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. T. Franiel, L. Lüdemann, M. Taupitz, D. Böhmer, and D. Beyersdorff, “MRI before and after external beam intensity-modulated radiotherapy of patients with prostate cancer: the feasibility of monitoring of radiation-induced tissue changes using a dynamic contrast-enhanced inversion-prepared dual-contrast gradient echo sequence,” Radiotherapy and Oncology, vol. 93, no. 2, pp. 241–245, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. J. M. Stahl, Y. Y. Chi, and W. A. Friedman, “Repeat radiosurgery for intracranial arteriovenous malformations,” Neurosurgery, vol. 70, no. 1, pp. 150–154, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Prochnow, D. Beyersdorff, C. Warmuth, M. Taupitz, O. Gemeinhardt, and L. Lüdemann, “Implementation of a rapid inversion-prepared dual-contrast gradient echo sequence for quantitative dynamic contrast-enhanced magnetic resonance imaging of the human prostate,” Magnetic Resonance Imaging, vol. 23, no. 10, pp. 983–990, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. S. S. Kety, “Theory of blood-tissue exchange and its application to measurement of blood flow,” Methods in Medical Research, vol. 8, pp. 223–227, 1960. View at Google Scholar
  6. L. Lüdemann, B. Nafz, F. Elsner et al., “Absolute quantification of regional renal blood flow in swine by dynamic contrast-enhanced magnetic resonance imaging using a blood pool contrast agent,” Investigative Radiology, vol. 44, no. 3, pp. 125–134, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. V. Noblet, C. Heinrich, F. Heitz, and J. P. Armspach, “Retrospective evaluation of a topology preserving non-rigid registration method,” Medical Image Analysis, vol. 10, no. 3, pp. 366–384, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. V. Noblet, C. Heinrich, F. Heitz, and J. P. Armspach, “3-D deformable image registration: a topology preservation scheme based on hierarchical deformation models and interval analysis optimization,” IEEE Transactions on Image Processing, vol. 14, no. 5, pp. 553–566, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Klein, M. Staring, K. Murphy, M. A. Viergever, and J. P. W. Pluim, “Elastix: a toolbox for intensity-based medical image registration,” IEEE Transactions on Medical Imaging, vol. 29, no. 1, pp. 196–205, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Cao, K. Ding, J. M. Reinhardt, and G. E. Christensen, “Improving intensity-based lung CT registration accuracy utilizing vascular information,” International Journal of Biomedical Imaging, vol. 2012, Article ID 285136, 17 pages, 2012. View at Publisher · View at Google Scholar
  11. X. Zhuang, K. S. Rhode, R. S. Razavi, D. J. Hawkes, and S. Ourselin, “A registration-based propagation framework for automatic whole heart segmentation of cardiac MRI,” IEEE Transactions on Medical Imaging, vol. 29, no. 9, pp. 1612–1625, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. F. Dru, P. Fillard, and T. Vercauteren, “An ITK implementation of the symmetric log-domain diffeomorphic demons algorithm,” The Insight Journal, 2010. View at Google Scholar
  13. D. Rueckert, L. I. Sonoda, C. Hayes, D. L. Hill, M. O. Leach, and D. J. Hawkes, “Nonrigid registration using free-form deformations: application to breast MR images,” IEEE Transactions on Medical Imaging, vol. 18, no. 8, pp. 712–721, 1999. View at Google Scholar · View at Scopus
  14. M. Modat, G. R. Ridgway, Z. A. Taylor et al., “Fast free-form deformation using graphics processing units,” Computer Methods and Programs in Biomedicine, vol. 98, no. 3, pp. 278–284, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: active contour models,” International Journal of Computer Vision, vol. 1, no. 4, pp. 321–331, 1988. View at Publisher · View at Google Scholar · View at Scopus
  16. T. W. Sederberg and S. R. Parry, “Free-form deformation of solid geometric models,” Computer Graphics, vol. 20, no. 4, pp. 151–160, 1986. View at Google Scholar · View at Scopus
  17. E. C. Hildreth, “Edge detection,” Memo 858, Massachusetts Institute of Technology, Aritficial Intelligence Laboratory, Cambridge, Mass, USA, 1985. View at Google Scholar
  18. J. A. Sethian, Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, vol. 3, Cambridge University Press, 2nd edition, 1999.
  19. S. J. Osher and R. P. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Springer, 1st edition, 2002.
  20. R. Courant, K. Friedrichs, and H. Lewy, “On the partial difference equations of mathematical physics,” IBM Journal of Research and Development, vol. 11, no. 2, pp. 215–234, 1967. View at Google Scholar
  21. K. Levenberg, “A method for the solution of certain problems in least squares,” Quarterly of Applied Mathematics, vol. 2, pp. 164–168, 1944. View at Google Scholar
  22. D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” Journal of the Society for Industrial and Applied Mathematics, vol. 11, no. 2, pp. 431–441, 1963. View at Google Scholar
  23. J. Ahlberg, Active contours in three dimensions [M.S. thesis], Linköping University, Linköping, Sweden, 1996.
  24. P. A. Yushkevich, J. Piven, H. C. Hazlett et al., “User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability,” NeuroImage, vol. 31, no. 3, pp. 1116–1128, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, The MIT Press, 2nd edition, 2001.
  26. J. Ricke, M. Thormann, M. Ludewig et al., “MR-guided liver tumor ablation employing open high-field 1.0T MRI for image-guided brachytherapy,” European Radiology, vol. 20, no. 8, pp. 1985–1993, 2010. View at Google Scholar
  27. Y. J. Zhang, “A survey on evaluation methods for image segmentation,” Pattern Recognition, vol. 29, no. 8, pp. 1335–1346, 1996. View at Publisher · View at Google Scholar · View at Scopus
  28. W. R. Crum, O. Camara, and D. L. G. Hill, “Generalized overlap measures for evaluation and validation in medical image analysis,” IEEE Transactions on Medical Imaging, vol. 25, no. 11, pp. 1451–1461, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. L. R. Dice, “Measures of the amount of ecologic association between species,” Ecology, vol. 26, no. 3, pp. 297–302, 1945. View at Google Scholar
  30. V. Chalana and Y. Kim, “A methodology for evaluation of boundary detection algorithms on medical images,” IEEE Transactions on Medical Imaging, vol. 16, no. 5, pp. 642–652, 1997. View at Google Scholar · View at Scopus
  31. G. Gerig, M. Jomier, and M. Chakos, “Valmet: a new validation tool for assessing and improving 3D object segmentation,” in Medical Image Computing and Computer-Assisted Intervention (MICCAI '01), W. J. Niessen and M. A. Viergever, Eds., vol. 2208 of Lecture Notes in Computer Science, pp. 516–523, Springer, Berlin, Germany, 2001. View at Google Scholar
  32. M. D. Levine and A. M. Nazif, “Dynamic measurement of computer generated image segmentations,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 7, no. 2, pp. 155–164, 1985. View at Publisher · View at Google Scholar · View at Scopus
  33. S. K. Warfield, K. H. Zou, M. R. Kaus, and W. M. Wells, “Simultaneous validation of image segmentation and assessment of expert quality,” in Proceedings of the International Symposium on Biomedical Imaging: Macro to Nano, pp. 94–97, Washington, DC, USA, July 2002. View at Publisher · View at Google Scholar
  34. S. K. Warfield, K. H. Zou, and W. M. Wells, “Validation of image segmentation and expert quality with an expectation-maximization algorithm,” in Proceedings of the 5th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI '02), pp. 298–306, Springer, 2002.
  35. P. Viola and W. M. Wells, “Alignment by Maximization of Mutual Information,” International Journal of Computer Vision, vol. 24, no. 2, pp. 137–154, 1997. View at Google Scholar · View at Scopus
  36. J. A. Schnabel, C. Tanner, A. D. Castellano-Smith et al., “Validation of nonrigid image registration using finite-element methods: application to breast MR images,” IEEE Transactions on Medical Imaging, vol. 22, no. 2, pp. 238–247, 2003. View at Publisher · View at Google Scholar · View at Scopus