Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2013, Article ID 931507, 19 pages
http://dx.doi.org/10.1155/2013/931507
Research Article

Rotation Covariant Image Processing for Biomedical Applications

1Graduate School of Informatics, Kyoto University, Gokasho, 611-0011 Uji, Kyoto, Japan
2Department of Diagnostic Radiology, Medical Physics, University Medical Center, Breisacher Street 60a, 79106 Freiburg, Germany

Received 21 December 2012; Accepted 21 March 2013

Academic Editor: Peng Feng

Copyright © 2013 Henrik Skibbe and Marco Reisert. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. F. Förstner, “A feature based correspondence algorithm for image matching,” International Archives of Photogrammetry and Remote Sensing, vol. 26, no. 3, pp. 150–166, 1986. View at Google Scholar
  2. H. Skibbe, M. Reisert, Q. Wang, O. Ronneberger, and H. Burkhardt, “Fast computation of 3D spherical Fourier harmonic descriptors—a complete orthonormal basis for a rotational invariant representation of three-dimensional objects,” in Proceedings of the 12th IEEE International Conference on Computer Vision Workshops (ICCV '09), pp. 1863–1869, Kyoto, Japan, October 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Rose, Elementary Theory of Angular Momentum, Dover Publications, New York, NY, USA, 1995.
  4. M. Reisert and H. Burkhardt, “Spherical tensor calculus for local adaptive filtering,” in Tensors in Image Processing and Computer Vision, S. Aja-Fernández, R. de Luis García, D. Tao, and X. Li, Eds., Springer, 2009. View at Google Scholar
  5. M. Reisert, “Spherical derivatives for steerable filtering in 3D,” Tech. Rep. 3, Albert-Ludwigs-Universitt Freiburg, 2007. View at Google Scholar
  6. H. Skibbe, M. Reisert, T. Schmidt, K. Palme, O. Ronneberger, and H. Burkhardt, “3D object detection using a fast voxel-wise local spherical Fourier tensor transformation,” in Proceedings of the 32nd Symposium of the German Association for Pattern Recognition (DAGM '10), Lecture Notes in Computer Science, pp. 412–421, Springer, Darmstadt, Germany, 2010.
  7. H. Skibbe, M. Reisert, T. Schmidt, T. Brox, O. Ronneberger, and H. Burkhardt, “Fast rotation invariant 3D feature computation utilizing efficient local neighborhood operators,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 8, pp. 1563–1575, 2012. View at Publisher · View at Google Scholar
  8. O. Matsuoka, “Molecular integrals over spherical Laguerre Gaussian-type functions,” The Journal of Chemical Physics, vol. 92, no. 7, pp. 4364–4371, 1990. View at Google Scholar · View at Scopus
  9. L. Y. Chow Chiu and M. Moharerrzadeh, “The addition theorem of spherical Laguerre Gaussian functions and its application in molecular integrals,” Journal of Molecular Structure: THEOCHEM, vol. 536, no. 2-3, pp. 263–267, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. J. J. Koenderink and A. J. van Doorn, “Generic neighborhood operators,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14, no. 6, pp. 597–605, 1992. View at Publisher · View at Google Scholar
  11. L. Sorgi, N. Cimminiello, and A. Neri, “Keypoints selection in the gauss laguerre transformed domain,” in Proceedings of the British Machine Vision Conference (BMVC '06), pp. 539–547, Edinburgh, UK, 2006.
  12. Z. Qian, D. N. Metaxas, and L. Axel, “Extraction and tracking of MRI tagging sheets using a 3D Gabor filter bank,” in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 1, pp. 711–714, 2006. View at Scopus
  13. J. Bigun, “Speed, frequency, and orientation tuned 3-D Gabor filter banks and their design,” in Proceedings of the 12th IAPR International Conference on Pattern Recognition (ICPR '94), pp. 184–187, 1994.
  14. M. Reisert and H. Burkhardt, “Efficient tensor voting with 3D tensorial harmonics,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW '08), pp. 1–7, June 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Guy and G. Medioni, “Inferring global perceptual contours from local features,” International Journal of Computer Vision, vol. 20, no. 1-2, pp. 113–133, 1996. View at Google Scholar · View at Scopus
  16. D. H. Ballard, “Generalizing the Hough transform to detect arbitrary shapes,” Pattern Recognition, vol. 13, no. 2, pp. 111–122, 1981. View at Google Scholar · View at Scopus
  17. D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Reisert and H. Burkhardt, “Harmonic filters for generic feature detection in 3D,” in Proceedings of the 31st Symposium of the German Association for Pattern Recognition (DAGM '09), vol. 5748 of Lecture Notes in Computer Science, pp. 131–140, Springer, Jena, Germany, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Schlachter, M. Reisert, C. Herz et al., “Harmonic filters for 3D multichannel data: rotation invariant detection of mitoses in colorectal cancer,” IEEE Transactions on Medical Imaging, vol. 29, no. 8, pp. 1485–1495, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Skibbe, M. Reisert, O. Ronneberger, and H. Burkhardt, “Spherical Bessel filter for 3D object detection,” in Proceedings of the 8th IEEE International Symposium on Biomedical Imaging (ISBI '11), Chicago, Ill, USA, April 2011.
  21. D. S. Tuch, R. M. Weissko, J. W. Belliveau, and V. J. Wedeen, “High angular resolution diffusion imaging of the human brain,” in Proceedings of the 7th Annual Meeting of the ISMRM, Philadelphia, Pa, USA, 1999.
  22. M. Reisert, I. Mader, C. Anastasopoulos, M. Weigel, S. Schnell, and V. Kiselev, “Global fiber reconstruction becomes practical,” NeuroImage, vol. 54, no. 2, pp. 955–962, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Skibbe, M. Reisert, and H. Burkhardt, “Gaussian neighborhood descriptors for brain segmentation,” in Proceedings of the 12th IAPR Conference on Machine Vision Applications (MVA '11), Nara, Japan, 2011.
  24. H. Skibbe and M. Reisert, “Dense rotation invariant brain pyramids for automated human brain parcellation,” in Proceedings of the Workshop on Emerging Technologies for Medical Diagnosis and Therapy (Informatik '11), Berlin, Germany, 2011.
  25. S. Schnell, D. Saur, B. W. Kreher, J. Hennig, H. Burkhardt, and V. G. Kiselev, “Fully automated classification of HARDI in vivo data using a support vector machine,” NeuroImage, vol. 46, no. 3, pp. 642–651, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. Z. Xue, D. Shen, and C. Davatzikos, “Determining correspondence in 3-D MR brain images using attribute vectors as morphological signatures of voxels,” IEEE Transactions on Medical Imaging, vol. 23, no. 10, pp. 1276–1291, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Skibbe and M. Reisert, “Detection of unique point landmarks in hardi images of the human brain,” in Proceedings of the MICCAI Workshop on Computational Diffusion MRI (CDMRI '12), Nice, France, 2012.
  29. R. Kondor, Group theoretical methods in machine learning [Ph.D. thesis], Columbia University, 2008.
  30. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover, Gpo, New York, NY, USA, 9th-10th edition, 1964.
  31. I. N. Bronshtein and K. A. Semendyayev, Handbook of Mathematics, Springer, London, UK, 3rd edition, 1997.
  32. E. W. Weisstein, “Double factorial,” MathWorld—A Wolfram Web Resource, http://mathworld.wolfram.com/DoubleFactorial.html.
  33. E. W. Weisstein, “Gamma function,” MathWorld—A Wolfram Web Resource, http://mathworld.wolfram.com/GammaFunction.html.