Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2014, Article ID 340758, 7 pages
http://dx.doi.org/10.1155/2014/340758
Research Article

Integrating Gene Expression and Protein Interaction Data for Signaling Pathway Prediction of Alzheimer’s Disease

1Information Engineering College, Shanghai Maritime University, Shanghai 201306, China
2DNJ Pharma and Rowan University, Glassboro, NJ 08028, USA
3Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Received 23 February 2014; Accepted 18 March 2014; Published 9 April 2014

Academic Editor: Tao Huang

Copyright © 2014 Wei Kong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Haruhiko, S. Barger, S. Barnum et al., “Inflammation and Alzheimer's disease,” Neurobiology of Aging, vol. 21, pp. 383–421, 2000. View at Google Scholar
  2. M. Meyer-Luehmann, T. L. Spires-Jones, C. Prada et al., “Rapid appearance and local toxicity of amyloid-β plaques in a mouse model of Alzheimer's disease,” Nature, vol. 451, no. 7179, pp. 720–724, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. Y.-J. Lee, S. B. Han, S.-Y. Nam, K.-W. Oh, and J. T. Hong, “Inflammation and Alzheimer's disease,” Archives of Pharmacal Research, vol. 33, no. 10, pp. 1539–1556, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Galimberti and E. Scarpini, “Inflammation and oxidative damage in Alzheimer's disease: friend or foe?” Frontiers in Bioscience, vol. 3, pp. 252–266, 2011. View at Google Scholar · View at Scopus
  5. H. Johnston, H. Boutin, and S. M. Allan, “Assessing the contribution of inflammation in models of Alzheimer's disease,” Biochemical Society Transactions, vol. 39, no. 4, pp. 886–890, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Holmes and J. Butchart, “Systemic inflammation and Alzheimer's disease,” Biochemical Society Transactions, vol. 39, no. 4, pp. 898–901, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. X. Lan, R. Liu, L. Sun, T. Zhang, and G. Du, “Methyl salicylate 2-O-β-D-lactoside, a novel salicylic acid analogue, acts as an anti-inflammatory agent on microglia and astrocytes,” Journal of Neuroinflammation, vol. 8, article 98, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. N. Bhardwaj and H. Lu, “Correlation between gene expression profiles and protein-protein interactions within and across genomes,” Bioinformatics, vol. 21, no. 11, pp. 2730–2738, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Huang, X. Sun, and G. Hu, “An integrated genetics approach for identifying protein signal pathways of Alzheimer's disease,” Computer Methods in Biomechanics and Biomedical Engineering, vol. 14, no. 4, pp. 371–378, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Feng, R. Jiang, and T. Jiang, “A max-flow-based approach to the identification of protein complexes using protein interaction and microarray data,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 8, no. 3, pp. 621–634, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Huang, J. Zhang, and Y. Huang, “Computational identification of proteins sub-network in Parkinson's disease study,” in Proceedings of the International Conference on Anti-Counterfeiting, Security and Identification (ASID '12), pp. 1–4, 2012.
  12. M. J. Jahid and J. Ruan, “Identification of biomarkers in breast cancer metastasis by integrating protein-protein interaction network and gene expression data,” in Proceedings of the IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS '11), pp. 60–63, 2011.
  13. X.-M. Zhao, R.-S. Wang, L. Chen, and K. Aihara, “Uncovering signal transduction networks from high-throughput data by integer linear programming,” Nucleic Acids Research, vol. 36, no. 9, article e48, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Li and H. Li, “Network-constrained regularization and variable selection for analysis of genomic data,” Bioinformatics, vol. 24, no. 9, pp. 1175–1182, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. X. Zhou, L. Yuan, X. Zhao et al., “Genistein antagonizes inflammatory damage induced by β-amyloid peptide in microglia through TLR4 and NF-κB,” Nutrition, vol. 30, no. 1, pp. 90–95, 2014. View at Google Scholar
  16. E. M. Blalock, J. W. Geddes, K. C. Chen, N. M. Porter, W. R. Markesbery, and P. W. Landfield, “Incipient Alzheimer's disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 7, pp. 2173–2178, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Rolova, L. Puli, J. Magga et al., “Complex regulation of acute and chronic neuroinflammatory responses in mouse models deficient for nuclear factor kappa B p50 subunit,” Neurobiology of Disease, vol. 15, no. 64, pp. 16–29, 2013. View at Google Scholar
  18. P. T. Foteinou, S. E. Calvano, S. F. Lowry, and I. P. Androulakis, “In silico simulation of corticosteroids effect on an NFkB-dependent physicochemical model of systemic inflammation,” PLoS ONE, vol. 4, no. 3, Article ID e4706, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Zanotti and C. Ernesto, “Notch1 and Notch2 expression in osteoblast precursors regulates femoral microarchitecture,” Bone, vol. 62, pp. 22–28, 2014. View at Publisher · View at Google Scholar
  20. K. Tanigaki, F. Nogaki, J. Takahashi, K. Tashiro, H. Kurooka, and T. Honjo, “Notch1 and Notch3 instructively restrict bFGF-responsive multipotent neural progenitor cells to an astroglial fate,” Neuron, vol. 29, no. 1, pp. 45–55, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Renard and M. Raes, “The proinflammatory transcription factor NFκB: a potential target for novel therapeutical strategies,” Cell Biology and Toxicology, vol. 15, no. 6, pp. 341–344, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Yao, W. K. Tae, J. Qin et al., “Interleukin-1 (IL-1)-induced TAK1-dependent Versus MEKK3-dependent NFκB activation pathways bifurcate at IL-1 receptor-associated kinase modification,” The Journal of Biological Chemistry, vol. 282, no. 9, pp. 6075–6089, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Bash, W.-X. Zong, S. Banga et al., “Rel/NF-κB can trigger the Notch signaling pathway by inducing the expression of Jagged1, a ligand for Notch receptors,” The EMBO Journal, vol. 18, no. 10, pp. 2803–2811, 1999. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Osipo, T. E. Golde, B. A. Osborne, and L. A. Miele, “Off the beaten pathway: the complex cross talk between Notch and NF-κB,” Laboratory Investigation, vol. 88, no. 1, pp. 11–17, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. V. Bolós, J. Grego-Bessa, and J. L. De La Pompa, “Notch signaling in development and cancer,” Endocrine Reviews, vol. 28, no. 3, pp. 339–363, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. J. N. Anastas and R. T. Moon, “WNT signalling pathways as therapeutic targets in cancer,” Nature Reviews Cancer, vol. 13, no. 1, pp. 11–26, 2013. View at Google Scholar
  27. K. N. Nejak-Bowen and S. P. S. Monga, “Beta-catenin signaling, liver regeneration and hepatocellular cancer: sorting the good from the bad,” Seminars in Cancer Biology, vol. 21, no. 1, pp. 44–58, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Gong, C. Liu, L. Zhang et al., “Loss of the TNFα function inhibits Wnt/β-catenin signaling, exacerbates obesity development in adolescent spontaneous obese mice,” Molecular and Cellular Biochemistry, 2014. View at Publisher · View at Google Scholar
  29. Q. Du and D. A. Geller, “Cross-regulation between Wnt and NF-κB signaling pathways,” Forum on Immunopathological Disease Therapeutics, vol. 1, no. 3, pp. 155–181, 2010. View at Google Scholar
  30. A. Echalier, Y. Pan, M. Birol et al., “Insights into the regulation of the human COP9 signalosome catalytic subunit, CSN5/Jab1,” , Proceeding of National Academy of Science of USA, vol. 110, no. 4, pp. 1273–1278, 2013. View at Google Scholar
  31. H. Wang, D. Dey, I. Carrera et al., “COPS5 (Jab1) protein increases β site processing of amyloid precursor protein and amyloid β peptide generation by stabilizing RanBP9 protein levels,” The Journal of Biological Chemistry, vol. 288, no. 37, pp. 26668–26677, 2013. View at Google Scholar
  32. Y. Chun, M. Lee, and B. Park, “CSN5/JAB1 interacts with the centromeric components CENP-T and CENP-W and regulates their proteasome-mediated degradation,” The Journal of Biological Chemistry, vol. 288, no. 38, pp. 27208–27219, 2013. View at Google Scholar
  33. K. E. Gascoigne, K. Takeuchi, A. Suzuki, T. Hori, T. Fukagawa, and I. M. Cheeseman, “Induced ectopic kinetochore assembly bypasses the requirement for CENP-A nucleosomes,” Cell, vol. 145, no. 3, pp. 410–422, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. Z. J. Chen, “Ubiquitin signalling in the NF-κB pathway,” Nature Cell Biology, vol. 7, no. 8, pp. 758–765, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Yoshida, N. Yoneda-Kato, and J. Y. Kato, “CSN5 specifically interacts with CDK2 and controls senescence in a cytoplasmic cyclin E-mediated manner,” Science Reports, vol. 3, p. 1054, 2013. View at Google Scholar