Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2014 (2014), Article ID 369681, 16 pages
http://dx.doi.org/10.1155/2014/369681
Review Article

Advances and Computational Tools towards Predictable Design in Biological Engineering

1Laboratory of Bioinformatics, Mathematical Modelling and Synthetic Biology, Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 27100 Pavia, Italy
2Centre for Tissue Engineering, University of Pavia, 27100 Pavia, Italy

Received 3 April 2014; Accepted 9 June 2014; Published 3 August 2014

Academic Editor: Huiru Zheng

Copyright © 2014 Lorenzo Pasotti and Susanna Zucca. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. M. Sauro, “Modularity defined,” Molecular Systems Biology, vol. 4, p. 166, 2008. View at Google Scholar
  2. D. Endy, “Foundations for engineering biology,” Nature, vol. 438, no. 7067, pp. 449–453, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Kwok, “Five hard truths for synthetic biology,” Nature, vol. 463, no. 7279, pp. 288–290, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Muers, “Synthetic biology: quality and quantity,” Nature Reviews Genetics, vol. 14, no. 5, article 303, 2013. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Del Vecchio, A. J. Ninfa, and E. D. Sontag, “Modular cell biology: retroactivity and insulation,” Molecular Systems Biology, vol. 4, article 161, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. V. A. Rhodius, V. K. Mutalik, and C. A. Gross, “Predicting the strength of UP-elements and full-length E. coli σE promoters,” Nucleic Acids Research, vol. 40, no. 7, pp. 2907–2924, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. M. De Mey, J. Maertens, G. J. Lequeux, W. K. Soetaert, and E. J. Vandamme, “Construction and model-based analysis of a promoter library for E. coli: an indispensable tool for metabolic engineering,” BMC Biotechnology, vol. 7, article 34, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Meng, J. Wang, Z. Xiong, F. Xu, G. Zhao, and Y. Wang, “Quantitative design of regulatory elements based on high-precision strength prediction using artificial neural network,” PLoS ONE, vol. 8, no. 4, Article ID e60288, 2013. View at Publisher · View at Google Scholar · View at Scopus
  9. H. M. Salis, E. A. Mirsky, and C. A. Voigt, “Automated design of synthetic ribosome binding sites to control protein expression,” Nature Biotechnology, vol. 27, no. 10, pp. 946–950, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Na and D. Lee, “RBSDesigner: software for designing synthetic ribosome binding sites that yields a desired level of protein expression,” Bioinformatics, vol. 26, no. 20, pp. 2633–2634, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. S. W. Seo, J.-S. Yang, I. Kim, B. E. Min, S. Kim, and G. Y. Jung, “Predictive design of mRNA translation initiation region to control prokaryotic translation efficiency,” Metabolic Engineering, vol. 15, no. 1, pp. 67–74, 2013. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Jayaraj, R. Reid, and D. V. Santi, “GeMS: an advanced software package for designing synthetic genes,” Nucleic Acids Research, vol. 33, no. 9, pp. 3011–3016, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Puigbò, E. Guzmán, A. Romeu, and S. Garcia-Vallvé, “OPTIMIZER: a web server for optimizing the codon usage of DNA sequences,” Nucleic Acids Research, vol. 35, no. 2, pp. W126–W131, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Wu, N. Bashir-Bello, and S. J. Freeland, “The Synthetic Gene Designer: a flexible web platform to explore sequence manipulation for heterologous expression,” Protein Expression and Purification, vol. 47, no. 2, pp. 441–445, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Villalobos, J. E. Ness, C. Gustafsson, J. Minshull, and S. Govindarajan, “Gene Designer: a synthetic biology tool for constructuring artificial DNA segments,” BMC Bioinformatics, vol. 7, article 285, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Cambray, J. C. Guimaraes, V. K. Mutalik et al., “Measurement and modeling of intrinsic transcription terminators,” Nucleic Acids Research, vol. 41, no. 9, pp. 5139–5148, 2013. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. J. Chen, P. Liu, A. A. K. Nielsen et al., “Characterization of 582 natural and synthetic terminators and quantification of their design constraints,” Nature Methods, vol. 10, no. 7, pp. 659–664, 2013. View at Publisher · View at Google Scholar · View at Scopus
  18. B. Wang, R. I. Kitney, N. Joly, and M. Buck, “Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology,” Nature Communications, vol. 2, no. 1, article 508, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. T. S. Moon, C. Lou, A. Tamsir, B. C. Stanton, and C. A. Voigt, “Genetic programs constructed from layered logic gates in single cells,” Nature, vol. 491, no. 7423, pp. 249–253, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Pasotti, N. Politi, S. Zucca, M. G. Cusella De Angelis, and P. Magni, “Bottom-up engineering of biological systems through standard bricks: a modularity study on basic parts and devices,” PLoS ONE, vol. 7, no. 7, Article ID e39407, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Jayanthi, K. S. Nilgiriwala, and D. Del Vecchio, “Retroactivity controls the temporal dynamics of gene transcription,” ACS Synthetic Biology, vol. 2, no. 8, pp. 431–441, 2013. View at Publisher · View at Google Scholar · View at Scopus
  22. H. N. Lim, Y. Lee, and R. Hussein, “Fundamental relationship between operon organization and gene expression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 26, pp. 10626–10631, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Mileyko, R. I. Joh, and J. S. Weitz, “Small-scale copy number variation and large-scale changes in gene expression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 43, pp. 16659–16664, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. D. H. S. Block, R. Hussein, L. W. Liang, and H. N. Lim, “Regulatory consequences of gene translocation in bacteria,” Nucleic Acids Research, vol. 40, no. 18, pp. 8979–8992, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Simeoni, G. De Nicolao, P. Magni, M. Rocchetti, and I. Poggesi, “Modeling of human tumor xenografts and dose rationale in oncology,” Drug Discovery Today: Technologies, vol. 10, no. 3, pp. e365–e372, 2013. View at Publisher · View at Google Scholar · View at Scopus
  26. B. P. Kovatchev, M. Breton, C. Dalla Man, and C. Cobelli, “In silico preclinical trials: a proof of concept in closed-loop control of type 1 diabetes,” Journal of Diabetes Science and Technology, vol. 3, no. 1, pp. 44–55, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. E. Andrianantoandro, S. Basu, D. K. Karig, and R. Weiss, “Synthetic biology: new engineering rules for an emerging discipline,” Molecular Systems Biology, vol. 2, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. D. E. Cameron, C. J. Bashor, and J. J. Collins, “A brief history of synthetic biology,” Nature Reviews Microbiology, vol. 12, pp. 381–390, 2014. View at Publisher · View at Google Scholar
  29. G. M. Church, M. B. Elowitz, C. D. Smolke, C. A. Voigt, and R. Weiss, “Realizing the potential of synthetic biology,” Nature Reviews Molecular Cell Biology, vol. 15, pp. 289–294, 2014. View at Publisher · View at Google Scholar
  30. MIT, Registry of Standard Biological Parts, http://partsregistry.org/.
  31. R. P. Shetty, D. Endy, and T. F. Knight, “Engineering BioBrick vectors from BioBrick parts,” Journal of Biological Engineering, vol. 2, article 5, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. J. C. Anderson, J. E. Dueber, M. Leguia, G. C. Wu, A. P. Arkin, and J. D. Keasling, “BglBricks: a flexible standard for biological part assembly,” Journal of Biological Engineering, vol. 4, article 1, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. J. E. Norville, R. Derda, S. Gupta et al., “Introduction of customized inserts for streamlined assembly and optimization of BioBrick synthetic genetic circuits,” Journal of Biological Engineering, vol. 4, article no. 17, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. M. A. Speer and T. L. Richard, “Amplified insert assembly: an optimized approach to standard assembly of BioBrick genetic circuits,” Journal of Biological Engineering, vol. 5, article 17, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Leguia, J. A. N. Brophy, D. Densmore, A. Asante, and J. C. Anderson, “2ab assembly: a methodology for automatable, high-throughput assembly of standard biological parts,” Journal of Biological Engineering, vol. 7, no. 1, article 2, 2013. View at Publisher · View at Google Scholar · View at Scopus
  36. B. Canton, A. Labno, and D. Endy, “Refinement and standardization of synthetic biological parts and devices,” Nature Biotechnology, vol. 26, no. 7, pp. 787–793, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. J. R. Kelly, A. J. Rubin, J. H. Davis et al., “Measuring the activity of BioBrick promoters using an in vivo reference standard,” Journal of Biological Engineering, vol. 3, article 4, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. J. C. Anderson, C. A. Voigt, and A. P. Arkin, “Environmental signal integration by a modular and gate,” Molecular Systems Biology, vol. 3, p. 133, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Tamsir, J. J. Tabor, and C. A. Voigt, “Robust multicellular computing using genetically encoded NOR gates and chemical “wires”,” Nature, vol. 469, no. 7329, pp. 212–215, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. L. Pasotti, M. Quattrocelli, D. Galli, M. G. Cusella de Angelis, and P. Magni, “Multiplexing and demultiplexing logic functions for computing signal processing tasks in synthetic biology,” Biotechnology Journal, vol. 6, no. 7, pp. 784–795, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. B. Wang and M. Buck, “Customizing cell signaling using engineered genetic logic circuits,” Trends in Microbiology, vol. 20, no. 8, pp. 376–384, 2012. View at Publisher · View at Google Scholar · View at Scopus
  42. T. S. Gardner, C. R. Cantor, and J. J. Collins, “Construction of a genetic toggle switch in Escherichia coli,” Nature, vol. 403, no. 6767, pp. 339–342, 2000. View at Publisher · View at Google Scholar · View at Scopus
  43. M. B. Elowitz and S. Leibier, “A synthetic oscillatory network of transcriptional regulators,” Nature, vol. 403, no. 6767, pp. 335–338, 2000. View at Publisher · View at Google Scholar · View at Scopus
  44. J. Stricker, S. Cookson, M. R. Bennett, W. H. Mather, L. S. Tsimring, and J. Hasty, “A fast, robust and tunable synthetic gene oscillator,” Nature, vol. 456, no. 7221, pp. 516–519, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. T. Danino, O. Mondragón-Palomino, L. Tsimring, and J. Hasty, “A synchronized quorum of genetic clocks,” Nature, vol. 463, no. 7279, pp. 326–330, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Basu, R. Mehreja, S. Thiberge, M. T. Chen, and R. Weiss, “Spatiotemporal control of gene expression with pulse-generating networks,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 17, pp. 6355–6360, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Basu, Y. Gerchman, C. H. Collins, F. H. Arnold, and R. Weiss, “A synthetic multicellular system for programmed pattern formation,” Nature, vol. 434, no. 7037, pp. 1130–1134, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. J. J. Tabor, H. Salis, Z. B. Simpson et al., “A synthetic genetic edge detection program,” Cell, vol. 137, no. 7, pp. 1272–1281, 2009. View at Google Scholar
  49. A. E. Friedland, T. K. Lu, X. Wang, D. Shi, G. Church, and J. J. Collins, “Synthetic gene networks that count,” Science, vol. 324, no. 5931, pp. 1199–1202, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. R. Daniel, J. R. Rubens, R. Sarpeshkar, and T. K. Lu, “Synthetic analog computation in living cells,” Nature, vol. 497, no. 7451, pp. 619–623, 2013. View at Publisher · View at Google Scholar · View at Scopus
  51. C. J. Paddon, P. J. Westfall, D. J. Pitera et al., “High-level semi-synthetic production of the potent antimalarial artemisinin,” Nature, vol. 496, no. 7446, pp. 528–532, 2013. View at Publisher · View at Google Scholar · View at Scopus
  52. K. de Mora, N. Joshi, B. L. Balint, F. B. Ward, A. Elfick, and C. E. French, “A pH-based biosensor for detection of arsenic in drinking water,” Analytical and Bioanalytical Chemistry, vol. 400, no. 4, pp. 1031–1039, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. C. E. French, K. de Mora, N. Joshi, A. Elfick, J. Haseloff, and J. Ajioka, “Synthetic biology and the art of biosensor design,” in Institute of Medicine (US) Forum on Microbial Threats. The Science and Applications of Synthetic and Systems Biology: Workshop Summary, National Academies Press, Washington, DC, USA, 2011. View at Google Scholar
  54. A. J. Wargacki, E. Leonard, M. N. Win et al., “An engineered microbial platform for direct biofuel production from brown macroalgae,” Science, vol. 335, no. 6066, pp. 308–313, 2012. View at Publisher · View at Google Scholar · View at Scopus
  55. F. Zhang, J. M. Carothers, and J. D. Keasling, “Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids,” Nature Biotechnology, vol. 30, no. 4, pp. 354–359, 2012. View at Publisher · View at Google Scholar · View at Scopus
  56. L. Serrano, “Synthetic biology: promises and challenges,” Molecular Systems Biology, vol. 3, article 158, 2007. View at Google Scholar
  57. A. P. Arkin, “A wise consistency: engineering biology for conformity, reliability, predictability,” Current Opinion in Chemical Biology, vol. 17, no. 6, pp. 893–901, 2013. View at Publisher · View at Google Scholar
  58. T. K. Lu, A. S. Khalil, and J. J. Collins, “Next-generation synthetic gene networks,” Nature Biotechnology, vol. 27, no. 12, pp. 1139–1150, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. Y. Yokobayashi, R. Weiss, and F. H. Arnold, “Directed evolution of a genetic circuit,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 26, pp. 16587–16591, 2002. View at Publisher · View at Google Scholar · View at Scopus
  60. S. Kosuri, D. B. Goodman, G. Cambray et al., “Composability of regulatory sequences controlling transcription and translation in Escherichia coli,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 34, pp. 14024–14029, 2013. View at Publisher · View at Google Scholar · View at Scopus
  61. F. Chizzolini, M. Forlin, D. Cecchi, and S. S. Mansy, “Gene position more strongly influences cell-free protein expression from operons than T7 transcriptional promoter strength,” ACS Synthetic Biology, 2013. View at Publisher · View at Google Scholar
  62. F. Ceroni, S. Furini, E. Giordano, and S. Cavalcanti, “Rational design of modular circuits for gene transcription: a test of the bottom-up approach,” Journal of Biological Engineering, vol. 4, article 14, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. D. Na, S. M. Yoo, H. Chung, H. Park, J. H. Park, and S. Y. Lee, “Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs,” Nature Biotechnology, vol. 31, no. 2, pp. 170–174, 2013. View at Publisher · View at Google Scholar · View at Scopus
  64. F. Crick, “Central dogma of molecular biology,” Nature, vol. 227, no. 5258, pp. 561–563, 1970. View at Publisher · View at Google Scholar · View at Scopus
  65. M. H. Medema, R. Van Raaphorst, E. Takano, and R. Breitling, “Computational tools for the synthetic design of biochemical pathways,” Nature Reviews Microbiology, vol. 10, no. 3, pp. 191–202, 2012. View at Publisher · View at Google Scholar · View at Scopus
  66. J. Ang, E. Harris, B. J. Hussey, R. Kil, and D. R. McMillen, “Tuning response curves for synthetic biology,” ACS Synthetic Biology, vol. 2, no. 10, pp. 547–567, 2013. View at Publisher · View at Google Scholar
  67. N. Crook and H. S. Alper, “Model-based design of synthetic, biological systems,” Chemical Engineering Science, vol. 103, pp. 2–11, 2013. View at Publisher · View at Google Scholar
  68. Y. Cai, M. L. Wilson, and J. Peccoud, “GenoCAD for iGEM: a grammatical approach to the design of standard-compliant constructs,” Nucleic Acids Research, vol. 38, no. 8, pp. 2637–2644, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. W. Kammerer, U. Deuschle, R. Gentz, and H. Bujard, “Functional dissection of Escherichia coli promoters: information in the transcribed region is involved in late steps of the overall process,” The EMBO Journal, vol. 5, no. 11, pp. 2995–3000, 1986. View at Google Scholar · View at Scopus
  70. S. Leirmo and R. L. Gourse, “Factor-independent activation of Escherichia coli rRNA transcription. I. Kinetic analysis of the roles of the upstream activator region and supercoiling on transcription of the rrnB P1 promoter in vitro,” Journal of Molecular Biology, vol. 220, no. 3, pp. 555–568, 1991. View at Publisher · View at Google Scholar · View at Scopus
  71. T. Caramori and A. Galizzi, “The UP element of the promoter for the flagellin gene, hag, stimulates transcription from both SigD- and SigA-dependent promoters in Bacillus subtilis,” Molecular and General Genetics, vol. 258, no. 4, pp. 385–388, 1998. View at Publisher · View at Google Scholar · View at Scopus
  72. S. T. Estrem, T. Gaal, W. Ross, and R. L. Gourse, “Identification of an UP element consensus sequence for bacterial promoters,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 17, pp. 9761–9766, 1998. View at Publisher · View at Google Scholar · View at Scopus
  73. J. H. Davis, A. J. Rubin, and R. T. Sauer, “Design, construction and characterization of a set of insulated bacterial promoters,” Nucleic Acids Research, vol. 39, no. 3, pp. 1131–1141, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. H. Alper, C. Fischer, E. Nevoigt, and G. Stephanopoulos, “Tuning genetic control through promoter engineering,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 36, pp. 12678–12683, 2005. View at Publisher · View at Google Scholar · View at Scopus
  75. S. T. Estrem, W. Ross, T. Gaal et al., “Bacterial promoter architecture: Subsite structure of UP elements and interactions with the carboxy-terminal domain of the RNA polymerase α subunit,” Genes and Development, vol. 13, no. 16, pp. 2134–2147, 1999. View at Publisher · View at Google Scholar · View at Scopus
  76. W. Ross, A. Ernst, and R. L. Gourse, “Fine structure of E. coli RNA polymerase-promoter interactions: α subunit binding to the UP element minor groove,” Genes and Development, vol. 15, no. 5, pp. 491–506, 2001. View at Publisher · View at Google Scholar · View at Scopus
  77. C. L. Chan and C. A. Gross, “The anti-initial transcribed sequence, a portable sequence that impedes promoter escape, requires σ70 for function,” The Journal of Biological Chemistry, vol. 276, no. 41, pp. 38201–38209, 2001. View at Google Scholar · View at Scopus
  78. L. Martin, A. Che, and D. Endy, “Gemini, a bifunctional enzymatic and fluorescent reporter of gene expression,” PLoS ONE, vol. 4, no. 11, Article ID e7569, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. M. Hajimorad, P. R. Gray, and J. D. Keasling, “A framework and model system to investigate linear system behavior in Escherichia coli,” Journal of Biological Engineering, vol. 5, article 3, 2011. View at Publisher · View at Google Scholar · View at Scopus
  80. V. A. Rhodius and V. K. Mutalik, “Predicting strength and function for promoters of the Escherichia coli alternative sigma factor, sigmaE,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 7, pp. 2854–2859, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. V. K. Mutalik, J. C. Guimaraes, G. Cambray et al., “Precise and reliable gene expression via standard transcription and translation initiation elements,” Nature Methods, vol. 10, no. 4, pp. 354–360, 2013. View at Publisher · View at Google Scholar · View at Scopus
  82. D. Na, S. Lee, and D. Lee, “Mathematical modeling of translation initiation for the estimation of its efficiency to computationally design mRNA sequences with desired expression levels in prokaryotes,” BMC Systems Biology, vol. 4, article 71, 2010. View at Publisher · View at Google Scholar · View at Scopus
  83. B. Reeve, T. Hargest, C. Gilbert, and T. Ellis, “Predicting translation initiation rates for designing synthetic biology,” Frontiers in Bioengineering and Biotechnology, vol. 2, article 1, 2014. View at Google Scholar
  84. A. Espah Borujeni, A. S. Channarasappa, and H. M. Salis, “Translation rate is controlled by coupled trade-offs between site accessibility, selective RNA unfolding and sliding at upstream standby sites,” Nucleic Acids Research, vol. 42, no. 4, pp. 2646–2659, 2014. View at Publisher · View at Google Scholar
  85. G. Pothoulakis, F. Ceroni, B. Reeve, and T. Ellis, “The Spinach RNA aptamer as a characterization tool for synthetic biology,” ACS Synthetic Biology, vol. 3, 182, no. 3, p. 187, 2014. View at Publisher · View at Google Scholar
  86. C. Bi, P. Su, J. Müller et al., “Development of a broad-host synthetic biology toolbox for ralstonia eutropha and its application to engineering hydrocarbon biofuel production,” Microbial Cell Factories, vol. 12, article 107, 2013. View at Publisher · View at Google Scholar
  87. F. F. Nowroozi, E. E. K. Baidoo, S. Ermakov et al., “Metabolic pathway optimization using ribosome binding site variants and combinatorial gene assembly,” Applied Microbiology and Biotechnology, vol. 98, no. 4, pp. 1567–1581, 2014. View at Publisher · View at Google Scholar
  88. M. Welch, S. Govindarajan, J. E. Ness et al., “Design parameters to control synthetic gene expression in Escherichia coli,” PLoS ONE, vol. 4, no. 9, Article ID e7002, 2009. View at Publisher · View at Google Scholar · View at Scopus
  89. C. Gustafsson, J. Minshull, S. Govindarajan, J. Ness, A. Villalobos, and M. Welch, “Engineering genes for predictable protein expression,” Protein Expression and Purification, vol. 83, no. 1, pp. 37–46, 2012. View at Publisher · View at Google Scholar · View at Scopus
  90. B. K. S. Chung and D. Y. Lee, “Computational codon optimization of synthetic gene for protein expression,” BMC Systems Biology, vol. 6, p. 134, 2012. View at Publisher · View at Google Scholar
  91. G. Kudla, A. W. Murray, D. Tollervey, and J. B. Plotkin, “Coding-sequence determinants of expression in Escherichia coli,” Science, vol. 324, no. 5924, pp. 255–258, 2009. View at Publisher · View at Google Scholar · View at Scopus
  92. H. G. Menzella, “Comparison of two codon optimization strategies to enhance recombinant protein production in Escherichia coli,” Microbial Cell Factories, vol. 10, article 15, 2011. View at Publisher · View at Google Scholar · View at Scopus
  93. C. Gustafsson, S. Govindarajan, and J. Minshull, “Codon bias and heterologous protein expression,” Trends in Biotechnology, vol. 22, no. 7, pp. 346–353, 2004. View at Publisher · View at Google Scholar · View at Scopus
  94. M. Graf, T. Schoedl, and R. Wagner, “Rationales of gene design and de novo gene construction,” in Systems Biology and Synthetic Biology, P. Fu and S. Panke, Eds., pp. 411–438, John Wiley& Sons, Hoboken, NJ, USA, 2009. View at Google Scholar
  95. P. M. Sharp and W. H. Li, “The codon adaptation index—a measure of directional synonymous codon usage bias, and its potential applications,” Nucleic Acids Research, vol. 15, no. 3, pp. 1281–1295, 1987. View at Publisher · View at Google Scholar · View at Scopus
  96. D. B. Goodman, G. M. Church, and S. Kosuri, “Causes and effects of N-terminal codon bias in bacterial genes,” Science, vol. 342, no. 6157, pp. 475–479, 2013. View at Google Scholar
  97. C. Elena, P. Ravasi, M. E. Castelli, S. Peiru, and H. G. Menzella, “Expression of codon optimized genes in microbial systems: current industrial applications and perspectives,” Frontiers in Microbiology, vol. 5, article 21, 2014. View at Publisher · View at Google Scholar
  98. G. L. Rosano and E. A. Ceccarelli, “Recombinant protein expression in Escherichia coli: advances and challenges,” Frontiers in Microbiology, vol. 5, p. 172, 2014. View at Google Scholar
  99. S. C. Sleight, B. A. Bartley, J. A. Lieviant, and H. M. Sauro, “Designing and engineering evolutionary robust genetic circuits,” Journal of Biological Engineering, vol. 4, p. 12, 2010. View at Publisher · View at Google Scholar · View at Scopus
  100. L. Pasotti, S. Zucca, M. Lupotto, M. G. Cusella De Angelis, and P. Magni, “Characterization of a synthetic bacterial self-destruction device for programmed cell death and for recombinant proteins release,” Journal of Biological Engineering, vol. 5, article 8, 2011. View at Publisher · View at Google Scholar · View at Scopus
  101. J. R. Kelly, Tools and reference standards supporting the engineering and evolution of synthetic biological systems [Ph.D. thesis], Massachusetts Institute of Technology, 2008.
  102. A. Levin-Karp, U. Barenholz, T. Bareia et al., “Quantifying translational coupling in E. coli synthetic operons using RBS modulation and fluorescent reporters,” ACS Synthetic Biology, vol. 2, no. 6, pp. 327–336, 2013. View at Publisher · View at Google Scholar · View at Scopus
  103. S. Zucca, L. Pasotti, G. Mazzini, M. G. Cusella De Angelis, and P. Magni, “Characterization of an inducible promoter in different DNA copy number conditions,” BMC Bioinformatics, vol. 13, no. 4, article S11, 2012. View at Publisher · View at Google Scholar · View at Scopus
  104. N. J. Guido, X. Wang, D. Adalsteinsson et al., “A bottom-up approach to gene regulation,” Nature, vol. 439, no. 7078, pp. 856–860, 2006. View at Publisher · View at Google Scholar · View at Scopus
  105. Y. Dublanche, K. Michalodimitrakis, N. Kümmerer, M. Foglierini, and L. Serrano, “Noise in transcription negative feedback loops: simulation and experimental analysis,” Molecular Systems Biology, vol. 2, article 41, 2006. View at Google Scholar · View at Scopus
  106. T. S. Lee, R. A. Krupa, F. Zhang et al., “BglBrick vectors and datasheets: a synthetic biology platform for gene expression,” Journal of Biological Engineering, vol. 5, article 12, 2011. View at Publisher · View at Google Scholar · View at Scopus
  107. S. Zucca, L. Pasotti, N. Politi, M. G. Cusella De Angelis, and P. Magni, “A standard vector for the chromosomal integration and characterization of BioBrick parts in Escherichia coli,” Journal of Biological Engineering, vol. 7, no. 1, article 12, 2013. View at Publisher · View at Google Scholar · View at Scopus
  108. C. Solem and P. R. Jensen, “Modulation of gene expression made easy,” Applied and Environmental Microbiology, vol. 68, no. 5, pp. 2397–2403, 2002. View at Publisher · View at Google Scholar · View at Scopus
  109. L. O. Ingram and T. Conway, “Expression of different levels of ethanologenic enzymes from Zymomonas mobilis in recombinant strains of Escherichia coli,” Applied and Environmental Microbiology, vol. 54, no. 2, pp. 397–404, 1988. View at Google Scholar
  110. A. Martinez, S. W. York, L. P. Yomano et al., “Biosynthetic burden and plasmid burden limit expression of chromosomally integrated heterologous genes (pdc, adhB) in Escherichia coli,” Biotechnology Progress, vol. 15, no. 5, pp. 891–897, 1999. View at Publisher · View at Google Scholar · View at Scopus
  111. T. Ellis, X. Wang, and J. J. Collins, “Diversity-based, model-guided construction of synthetic gene networks with predicted functions,” Nature Biotechnology, vol. 27, no. 5, pp. 465–471, 2009. View at Publisher · View at Google Scholar · View at Scopus
  112. K. Temme, D. Zhao, and C. A. Voigt, “Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 18, pp. 7085–7090, 2012. View at Publisher · View at Google Scholar · View at Scopus
  113. N. Politi, L. Pasotti, S. Zucca et al., “Half-life measurements of chemical inducers for recombinant gene expression,” Journal of Biological Engineering, vol. 8, article 5, 2014. View at Publisher · View at Google Scholar
  114. R. Weiss, Cellular computation and communications using engineered genetic regulatory networks [Ph.D. thesis], Massachusetts Institute of Technology, 2001.
  115. H. H. Wang, F. J. Isaacs, P. A. Carr et al., “Programming cells by multiplex genome engineering and accelerated evolution,” Nature, vol. 460, no. 7257, pp. 894–898, 2009. View at Publisher · View at Google Scholar · View at Scopus
  116. B. F. Pfleger, D. J. Pitera, C. D. Smolke, and J. D. Keasling, “Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes,” Nature Biotechnology, vol. 24, no. 8, pp. 1027–1032, 2006. View at Publisher · View at Google Scholar · View at Scopus
  117. N. Sawada, T. Sakaki, S. Kitanaka, K. Takeyama, S. Kato, and K. Inouye, “Enzymatic properties of human 25-hydroxyvitamin D3 1α-hydroxylase. Coexpression with adrenodoxin and NADPH-adrenodoxin reductase in Escherichia coli,” European Journal of Biochemistry, vol. 265, no. 3, pp. 950–956, 1999. View at Publisher · View at Google Scholar · View at Scopus
  118. J. T. Kittleson, S. Cheung, and J. C. Anderson, “Rapid optimization of gene dosage in E. coli using DIAL strains,” Journal of Biological Engineering, vol. 5, article 10, 2011. View at Publisher · View at Google Scholar · View at Scopus
  119. C. N. Santos, D. D. Regitsky, and Y. Yoshikuni, “Implementation of stable and complex biological systems through recombinase-assisted genome engineering,” Nature Communications, vol. 4, article 2503, 2013. View at Google Scholar
  120. L. P. Yomano, S. W. York, S. Zhou, K. T. Shanmugam, and L. O. Ingram, “Re-engineering Escherichia coli for ethanol production,” Biotechnology Letters, vol. 30, no. 12, pp. 2097–2103, 2008. View at Publisher · View at Google Scholar · View at Scopus
  121. K. Ohta, D. S. Beall, J. P. Mejia, K. T. Shanmugam, and L. O. Ingram, “Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II,” Applied and Environmental Microbiology, vol. 57, no. 4, pp. 893–900, 1991. View at Google Scholar · View at Scopus
  122. P. C. Turner, L. P. Yomano, L. R. Jarboe et al., “Optical mapping and sequencing of the Escherichia coli KO11 genome reveal extensive chromosomal rearrangements, and multiple tandem copies of the Zymomonas mobilis pdc and adhB genes,” Journal of Industrial Microbiology & Biotechnology, vol. 39, no. 4, pp. 629–639, 2012. View at Publisher · View at Google Scholar · View at Scopus
  123. K. E. J. Tyo, P. K. Ajikumar, and G. Stephanopoulos, “Stabilized gene duplication enables long-term selection-free heterologous pathway expression,” Nature Biotechnology, vol. 27, no. 8, pp. 760–765, 2009. View at Publisher · View at Google Scholar · View at Scopus
  124. L. Qi, R. E. Haurwitz, W. Shao, J. A. Doudna, and A. P. Arkin, “RNA processing enables predictable programming of gene expression,” Nature Biotechnology, vol. 30, no. 10, pp. 1002–1006, 2012. View at Publisher · View at Google Scholar · View at Scopus
  125. C. Lou, B. Stanton, Y. Chen, B. Munsky, and C. A. Voigt, “Ribozyme-based insulator parts buffer synthetic circuits from genetic context,” Nature Biotechnology, vol. 30, no. 11, pp. 1137–1142, 2012. View at Publisher · View at Google Scholar · View at Scopus
  126. D. Del Vecchio, “A control theoretic framework for modular analysis and design of biomolecular networks,” Annual Reviews in Control, vol. 37, pp. 333–345, 2013. View at Publisher · View at Google Scholar
  127. B. Li and L. You, “Predictive power of cell-to-cell variability,” Quantitative Biology, vol. 1, no. 2, pp. 131–139, 2013. View at Publisher · View at Google Scholar