Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2014 (2014), Article ID 761536, 8 pages
http://dx.doi.org/10.1155/2014/761536
Research Article

A Harmonic Linear Dynamical System for Prominent ECG Feature Extraction

1Department of Computer Science, Chonnam National University, Gwangju 500-757, Republic of Korea
2Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA

Received 27 September 2013; Revised 6 January 2014; Accepted 10 January 2014; Published 26 February 2014

Academic Editor: Imre Cikajlo

Copyright © 2014 Ngoc Anh Nguyen Thi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. T. Olszewski, Generalized feature extraction for structural pattern recognition in time series data [Ph.D. thesis], School of Computer Science, Carnegie Mellon University, 2001.
  2. S. Papadimitriou and M. Vlachos, Hand on Time Series Analysis with Matlab, ICDM, Hong Kong, 2006.
  3. H. S. Guan and Q. S. Jiang, “Cluster financial time series for portfolio,” in Proceedings of the International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR '07), pp. 851–856, November 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Krishnapuram, A. Joshi, O. Nasraoui, and L. Yi, “Low-complexity fuzzy relational clustering algorithms for web mining,” IEEE Transactions on Fuzzy Systems, vol. 9, no. 4, pp. 595–607, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. X. Zhang, J. Liu, Y. Du, and T. Lv, “A novel clustering method on time series data,” Expert Systems with Applications, vol. 38, no. 9, pp. 11891–11900, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. C. S. Möller-Levet, F. Klawonn, K. H. Cho, and O. Wolkenhauer, “Fuzzy clustering of short time-series and unevenly distributed sampling points,” in Advances in Intelligent Data Analysis V, vol. 2810 of Lecture Notes in Computer Science, pp. 330–340, 2003. View at Publisher · View at Google Scholar
  7. C. Goutte, L. K. Hansen, M. G. Liptrot, and E. Rostrup, “Feature-space clustering for fMRI meta-analysis,” Human Brain Mapping, vol. 13, no. 3, pp. 165–183, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Kalpakis, D. Gada, and V. Puttagunta, “Distance measures for effective clustering of ARIMA time-series,” in Proceedings of the 1st IEEE International Conference on Data Mining (ICDM '01), pp. 273–280, San Jose, Calif, USA, November-December 2001. View at Scopus
  9. Y. Xiong and D. Y. Yeung, “Time series clustering with ARMA mixtures,” Pattern Recognition, vol. 37, no. 8, pp. 1675–1689, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Warren Liao, “Clustering of time series data—a survey,” Pattern Recognition, vol. 38, no. 11, pp. 1857–1874, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. I. T. Jolliffe, Principal Component Analysis, Springer, 2002.
  12. C. Ding and X. He, “K-means clustering via principal component analysis,” in Proceedings of the 21st International Conference on Machine Learning (ICML '04), pp. 29–32, July 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Li, J. McCann, N. Pollard, and C. Faloutsos, “DynaMMo: mining and summarization of coevolving sequences with missing values,” in Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '09), pp. 507–515, New York, NY, USA, July 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Li and B. A. Prakash, “Time series clustering: complex is simpler!,” in Proceedings of the 28th International Conference on Machine Learning (ICML '11), pp. 185–192, July 2011. View at Scopus
  15. K. Fukunaga, Introduction to Statistical Pattern Recognition, Academic Press, San Diego, Calif, USA, 1990.
  16. Y. Wu, D. Agrawal, and A. E. Abbadi, “A comparison of DTF and DWT based similarity search in time series databases,” in Proceeding of the 9th ACM International Conference on Information and Knowledge Management (CIKM '00), pp. 488–495, 2000. View at Publisher · View at Google Scholar
  17. M. Jahangiri, D. Sacharidis, and C. Shahabi, “Shift-split: I/O efficient maintenance of wavelet-transformed multidimensional data,” in Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD '05), pp. 275–286, June 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. F. Morchen, “Time series feature extraction for data mining using dwt and dft,” Tech. Rep. 33, Philipps-University Marburg, 2003. View at Google Scholar
  19. L. Rabiner and B. H. Juang, Fundamentals of Speech Recognition, Prentice-Hall, Englewood Cliffs, NJ, USA, 1993.
  20. S. N. Navnath and S. H. Raghunath, “DWT and LPC based feature extraction methods for isolated word recognition,” EURASIP Journal on Audio, Speech, and Music Processing, vol. 2012, article 7, 2012. View at Publisher · View at Google Scholar
  21. L. Li, B. Aditya Prakash, and C. Faloutsos, “Parsimonious linear fingerprint for time series,” Proceedings of the VLDB Endowment, vol. 3, pp. 385–396, 2010. View at Google Scholar
  22. L. Ralaivola and F. D'Alché-Buc, “Time series filtering, smoothing and learning using the kernel Kalman filter,” in Proceedings of the International Joint Conference on Neural Networks (IJCNN '05), pp. 1449–1454, Montreal, Canada, August 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Jain, E. Y. Chang, and Y. F. Wang, “Adaptive stream resource management using Kalman Filters,” in Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD '04), pp. 11–22, June 2004. View at Scopus
  24. D. Gunopulos and G. Das, “Time series similarity measures and time series indexing,” in Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD '01), Santa Barbara, Calif, USA, May 2001. View at Scopus
  25. K. Deng, A. W. Moore, and M. C. Nechyba, “Learning to recognize time series: combining ARMA models with memory-based learning,” in Proceedings of the 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA '97), pp. 246–251, July 1997. View at Scopus
  26. X. Wang, K. Smith, and R. Hyndman, “Characteristic-based clustering for time series data,” Data Mining and Knowledge Discovery, vol. 13, no. 3, pp. 335–364, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. E. J. Keogh, T. Palpanas, V. B. Zordan, D. Gunopulos, and M. Cardle, “Indexing large human-motion databases,” in Proceedings of the 13th International Conference on Very Large Data Bases (VLDB '04), pp. 780–791, 2004.
  28. N. T. N. Anh, S. H. Kim, H. J. Yang, and S. H. Kim, “Hidden dynamic learning for long-interval consecutive missing values reconstruction in EEG time series,” in Proceedings of the IEEE International Conference on Granular Computing (GrC '11), pp. 653–658, Kaohsiung, Taiwan, November 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. R. E. Kalman, “A new approach to linear filtering and prediction problems,” Transactions of the ASME Journal of Basic Engineering, vol. 82, no. 1, pp. 35–45, 1960. View at Publisher · View at Google Scholar
  30. R. H. Shumway and D. S. Stoffer, “An approach to time series smoothing and forecasting using the EM algorithm,” Journal of Time Series Analysis, vol. 3, pp. 253–264, 1982. View at Publisher · View at Google Scholar
  31. K. Kalpakis, D. Gada, and V. Puttagunta, “Distance measures for effective clustering of ARIMA time-series,” in Proceedings of the 1st IEEE International Conference on Data Mining (ICDM '01), pp. 273–280, San Jose, Calif, USA, December 2001. View at Scopus
  32. H. Zhang, T. B. Ho, Y. Zhang, and M. S. Lin, “Unsupervised feature extraction for time series clustering using orthogonal wavelet transform,” Informatica, vol. 30, no. 3, pp. 305–319, 2006. View at Google Scholar · View at Scopus