Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2014 (2014), Article ID 979302, 17 pages
http://dx.doi.org/10.1155/2014/979302
Research Article

Automatic Detection and Quantification of WBCs and RBCs Using Iterative Structured Circle Detection Algorithm

1Pattern Recognition Research Group, Center for Artificial Intelligence Technology, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia
2Department of Pathology, UKM Medical Center, Universiti Kebangsaan Malaysia, Cheras, 56000 Kuala Lumpur, Malaysia

Received 30 December 2013; Revised 21 February 2014; Accepted 8 March 2014; Published 3 April 2014

Academic Editor: Shengyong Chen

Copyright © 2014 Yazan M. Alomari et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Habibzadeh, A. Krzyzak, and T. Fevens, “Application of pattern recognition techniques for the analysis of thin blood smears images,” Journal of Medical Informatics & Technologies, vol. 18, 2011. View at Google Scholar
  2. M. M. Osman, “Normal reference value of blood cell count, red, white and platelet of Khartoum North Area,” Al Neelain Medical Journal, vol. 3, no. 8, 2013. View at Google Scholar
  3. (NIH) National Institutes of Health, “A service of the U.S. National Library of Medicine,” http://www.nlm.nih.gov/medlineplus/ency/article/003642.htm.
  4. http://www.buzzle.com/articles/high-white-blood-cell-count.html.
  5. H. Berge, D. Taylor, S. Krishnan, and T. S. Douglas, “Improved red blood cell counting in thin blood smears,” in Proceedings of the 8th IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI '11), pp. 204–207, Chicago, Ill, USA, April 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. S. S. Savkare and S. P. Narote, “Automatic classification of normal and infected blood cells for parasitemia detection,” International Journal of Computer Science and Network Security, vol. 11, no. 2, pp. 94–97, 2011. View at Google Scholar
  7. J. M. Sharif, M. F. Miswan, M. A. Ngadi, S. Hj, and M. Mahadi, “Red blood cell segmentation using masking and watershed algorithm: a preliminary study,” in Proceedings of the International Conference on Biomedical Engineering (ICoBE '12), pp. 258–262, Penang, Malaysia, February 2012. View at Publisher · View at Google Scholar
  8. L. B. Damahe, P. G. Student, R. G. College, and R. G. C. Engg, “Segmentation based approach to detect parasites and RBCs in blood cell images,” International Journal of Computer Science and Applications, vol. 4, no. 2, 2011. View at Google Scholar
  9. L. B. D. Panchbhai and V. Vishal, “RBCs and parasites segmentation from thin smear blood cell images,” International Journal of Image, Graphics and Signal Processing, vol. 10, no. 10, pp. 54–60, 2012. View at Google Scholar
  10. S. Khan, A. Khan, and A. Naseem, “An accurate and cost effective approach to blood cell count,” International Journal of Computer Applications, vol. 50, no. 1, pp. 18–24, 2012. View at Google Scholar
  11. N. Nguyen, A. Duong, and H. Vu, “Cell splitting with high degree of overlapping in peripheral blood smear,” International Journal of Computer Theory and Engineering, vol. 3, no. 3, pp. 473–478, 2011. View at Google Scholar
  12. A. Rhodes and L. Bai, “Circle detection using a gabor annulus,” in Procedings of the British Machine Vision Conference, pp. 108.1–108.11, September 2011. View at Publisher · View at Google Scholar
  13. K.-L. Chung and Y.-H. Huang, “A pruning-and-voting strategy to speed up the detection for lines, circles, and ellipses,” Journal of Information Science and Engineering, vol. 24, no. 2, pp. 503–520, 2008. View at Google Scholar · View at Scopus
  14. R. K. K. Yip, P. K.-S. Tam, and D. N. K. Leung, “Modification of Hough transform for circles and ellipses detection using a 2-dimensional array,” Pattern Recognition, vol. 25, no. 9, pp. 1007–1022, 1992. View at Publisher · View at Google Scholar · View at Scopus
  15. E. P. Lyvers and O. R. Mitchell, “Precision edge contrast and orientation estimation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 10, no. 6, pp. 927–937, 1988. View at Publisher · View at Google Scholar · View at Scopus
  16. C.-T. Ho and L.-H. Chen, “A fast ellipse/circle detector using geometric symmetry,” Pattern Recognition, vol. 28, no. 1, pp. 117–124, 1995. View at Publisher · View at Google Scholar · View at Scopus
  17. C.-T. Ho and L.-H. Chen, “A high-speed algorithm for elliptical object detection,” IEEE Transactions on Image Processing, vol. 5, no. 3, pp. 547–550, 1996. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Xu, E. Oja, and P. Kultanen, “A new curve detection method: randomized Hough transform (RHT),” Pattern Recognition Letters, vol. 11, no. 5, pp. 331–338, 1990. View at Google Scholar · View at Scopus
  19. L. Xu and E. Oja, “Randomized Hough transform (RHT): basic mechanisms, algorithms, and computational complexities,” CVGIP: Image Understanding, vol. 57, no. 2, pp. 131–154, 1993. View at Publisher · View at Google Scholar · View at Scopus
  20. S.-H. Chiu, J.-J. Liaw, and K.-H. Lin, “A fast randomized Hough transform for circle/circular arc recognition,” International Journal of Pattern Recognition and Artificial Intelligence, vol. 24, no. 3, pp. 457–474, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. T.-C. Chen and K.-L. Chung, “An efficient randomized algorithm for detecting circles,” Computer Vision and Image Understanding, vol. 83, no. 2, pp. 172–191, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. N. H. Mahmood, P. C. Lim, S. M. Mazalan, and M. A. A. Razak, “Blood cells extraction using color based segmentation technique,” International Journal of Life Sciences Biotechnology and Pharma Research, vol. 2, no. 2, 2013. View at Google Scholar
  23. N. H. Mahmood and M. A. Mansor, “Red blood cells estimation using Hough transform technique,” Signal & Image Processing, vol. 3, no. 2, pp. 53–64, 2012. View at Google Scholar
  24. B. Venkatalakshmi and K. Thilagavathi, “Automatic red blood cell counting using Hough transform,” in Proceedings of the IEEE Conference on Information and Communication Technologies (ICT '13), pp. 267–271, JeJu Island, Korea, April 2013. View at Publisher · View at Google Scholar
  25. M. Maitra, R. K. Gupta, and M. Mukherjee, “Detection and counting of red blood cells in blood cell images using Hough transform,” International Journal of Computer Applications, vol. 53, no. 16, pp. 18–22, 2012. View at Google Scholar
  26. R. D. Labati, V. Piuri, and F. Scotti, “All-IDB: the acute lymphoblastic leukemia image database for image processing,” in Proceedings of the 18th IEEE International Conference on Image Processing (ICIP '11), pp. 2045–2048, Brussels, Belgium, September 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. E. Cuevas, D. Oliva, M. Díaz, D. Zaldivar, M. Pérez-cisneros, and G. Pajares, “White blood cell segmentation by circle detection using electromagnetism-like optimization,” Computational and Mathematical Methods in Medicine, vol. 2013, Article ID 395071, 15 pages, 2013. View at Publisher · View at Google Scholar
  28. L. Putzu and C. di Ruberto, “White blood cells identification and counting from microscopic blood image,” World Academy of Science, Engineering and Technology, vol. 7, no. 1, pp. 363–370, 2013. View at Google Scholar