Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2016 (2016), Article ID 2564584, 8 pages
http://dx.doi.org/10.1155/2016/2564584
Research Article

A Numerical Simulation of Cell Separation by Simplified Asymmetric Pinched Flow Fractionation

1School of Life Science, Beijing Institute of Technology, Beijing 100081, China
2School of Engineering and Information Technology, University of New South Wales, Canberra, ACT 2600, Australia
3Key Laboratory of Convergence Medical Engineering System and Healthcare Technology, The Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing 100081, China

Received 15 April 2016; Accepted 11 July 2016

Academic Editor: Yi Sui

Copyright © 2016 Jing-Tao Ma et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Autebert, B. Coudert, F.-C. Bidard et al., “Microfluidic: an innovative tool for efficient cell sorting,” Methods, vol. 57, no. 3, pp. 297–307, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. S. H. Cho, C. H. Chen, F. S. Tsai, J. M. Godin, and Y.-H. Lo, “Human mammalian cell sorting using a highly integrated micro-fabricated fluorescence-activated cell sorter (μFACS),” Lab on a Chip, vol. 10, no. 12, pp. 1567–1573, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. V. E. Gallardo and M. Behra, “Fluorescent activated cell sorting (FACS) combined with gene expression microarrays for transcription enrichment profiling of zebrafish lateral line cells,” Methods, vol. 62, no. 3, pp. 226–231, 2013. View at Publisher · View at Google Scholar · View at Scopus
  4. I. Van Brussel, R. Ammi, M. Rombouts et al., “Fluorescent activated cell sorting: an effective approach to study dendritic cell subsets in human atherosclerotic plaques,” Journal of Immunological Methods, vol. 417, pp. 76–85, 2015. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Lee, A. M. Purdon, and R. M. Westervelt, “Manipulation of biological cells using a microelectromagnet matrix,” Applied Physics Letters, vol. 85, no. 6, pp. 1063–1065, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Schriebl, G. Satianegara, A. Hwang et al., “Selective removal of undifferentiated human embryonic stem cells using magnetic activated cell sorting followed by a cytotoxic antibody,” Tissue Engineering Part A, vol. 18, no. 9-10, pp. 899–909, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Welzel, D. Seitz, and S. Schuster, “Magnetic-activated cell sorting (MACS) can be used as a large-scale method for establishing zebrafish neuronal cell cultures,” Scientific Reports, vol. 5, article 7959, 2015. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Valero, T. Braschler, N. Demierre, and P. Renaud, “A miniaturized continuous dielectrophoretic cell sorter and its applications,” Biomicrofluidics, vol. 4, no. 2, Article ID 022807, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. H. J. Song, J. M. Rosano, Y. Wang et al., “Continuous-flow sorting of stem cells and differentiation products based on dielectrophoresis,” Lab on a Chip, vol. 15, no. 5, pp. 1320–1328, 2015. View at Publisher · View at Google Scholar · View at Scopus
  10. J. V. Green, M. Radisic, and S. K. Murthy, “Deterministic lateral displacement as a means to enrich large cells for tissue engineering,” Analytical Chemistry, vol. 81, no. 21, pp. 9178–9182, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Sun, C. Liu, M. Li et al., “Size-based hydrodynamic rare tumor cell separation in curved microfluidic channels,” Biomicrofluidics, vol. 7, no. 1, Article ID 011802, 2013. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Song, M. S. Kim, J. Lee, and S. Choi, “A continuous-flow microfluidic syringe filter for size-based cell sorting,” Lab on a Chip, vol. 15, no. 5, pp. 1250–1254, 2015. View at Publisher · View at Google Scholar · View at Scopus
  13. J. McGrath, M. Jimenez, and H. Bridle, “Deterministic lateral displacement for particle separation: a review,” Lab on a Chip-Miniaturisation for Chemistry and Biology, vol. 14, no. 21, pp. 4139–4158, 2014. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Yamada, M. Nakashima, and M. Seki, “Pinched flow fractionation: continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel,” Analytical Chemistry, vol. 76, no. 18, pp. 5465–5471, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. A. L. Vig and A. Kristensen, “Separation enhancement in pinched flow fractionation,” Applied Physics Letters, vol. 93, no. 20, Article ID 203507, 2008. View at Publisher · View at Google Scholar
  16. C. Cupelli, T. Borchardt, T. Steiner, N. Paust, R. Zengerle, and M. Santer, “Leukocyte enrichment based on a modified pinched flow fractionation approach,” Microfluidics and Nanofluidics, vol. 14, no. 3-4, pp. 551–563, 2013. View at Publisher · View at Google Scholar · View at Scopus
  17. Q. Wei, Y.-Q. Xu, F.-B. Tian, T.-X. Gao, X.-Y. Tang, and W.-H. Zu, “IB-LBM simulation on blood cell sorting with a micro-fence structure,” Bio-Medical Materials and Engineering, vol. 24, no. 1, pp. 475–481, 2014. View at Publisher · View at Google Scholar · View at Scopus
  18. X. Wang and I. Papautsky, “Size-based microfluidic multimodal microparticle sorter,” Lab on a Chip, vol. 15, no. 5, pp. 1350–1359, 2015. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Takagi, M. Yamada, M. Yasuda, and M. Seki, “Continuous particle separation in a microchannel having asymmetrically arranged multiple branches,” Lab on a Chip, vol. 5, no. 7, pp. 778–784, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Maenaka, M. Yamada, M. Yasuda, and M. Seki, “Continuous and size-dependent sorting of emulsion droplets using hydrodynamics in pinched microchannels,” Langmuir, vol. 24, no. 8, pp. 4405–4410, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. J. T. Ma, Y. Q. Xu, F. B. Tian, and X. Y. Tang, “IB-LBM study on cell sorting by pinched flow fractionation,” Bio-Medical Materials and Engineering, vol. 24, no. 6, pp. 2547–2554, 2014. View at Publisher · View at Google Scholar · View at Scopus
  22. D. V. Le, B. C. Khoo, and K. M. Lim, “An implicit-forcing immersed boundary method for simulating viscous flows in irregular domains,” Computer Methods in Applied Mechanics and Engineering, vol. 197, no. 25–28, pp. 2119–2130, 2008. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  23. J. Wu and C. Shu, “Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications,” Journal of Computational Physics, vol. 228, no. 6, pp. 1963–1979, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. Z. Wang, J. Fan, and K. Cen, “Immersed boundary method for the simulation of 2D viscous flow based on vorticity-velocity formulations,” Journal of Computational Physics, vol. 228, no. 5, pp. 1504–1520, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. S. K. Kang and Y. A. Hassan, “A comparative study of direct-forcing immersed boundary-lattice Boltzmann methods for stationary complex boundaries,” International Journal for Numerical Methods in Fluids, vol. 66, no. 9, pp. 1132–1158, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. Z. Guo, C. G. Zheng, and B. C. Shi, “Discrete lattice effects on the forcing term in the lattice Boltzmann method,” Physical Review E, vol. 65, no. 4, Article ID 046308, 6 pages, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. F.-B. Tian, H. Luo, L. Zhu, J. C. Liao, and X.-Y. Lu, “An efficient immersed boundary-lattice Boltzmann method for the hydrodynamic interaction of elastic filaments,” Journal of Computational Physics, vol. 230, no. 19, pp. 7266–7283, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  28. H.-B. Deng, Y.-Q. Xu, D.-D. Chen, H. Dai, J. Wu, and F.-B. Tian, “On numerical modeling of animal swimming and flight,” Computational Mechanics, vol. 52, no. 6, pp. 1221–1242, 2013. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  29. Y. H. Qian, D. Humieres, and P. Lallemand, “Lattice BGK models for NavierStokes equation,” Europhysics Letters, vol. 17, article 479, 1992. View at Google Scholar
  30. D.-K. Sun, D. Jiang, N. Xiang, K. Chen, and Z.-H. Ni, “An immersed boundary-lattice boltzmann simulation of particle hydrodynamic focusing in a straight microchannel,” Chinese Physics Letters, vol. 30, no. 7, Article ID 074702, 2013. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases, Cambridge University Press, 1991.
  32. C. S. Peskin, “The immersed boundary method,” Acta Numerica, vol. 11, pp. 479–517, 2002. View at Publisher · View at Google Scholar · View at MathSciNet
  33. Y.-Q. Xu, F.-B. Tian, and Y.-L. Deng, “An efficient red blood cell model in the frame of IB-LBM and its application,” International Journal of Biomathematics, vol. 6, no. 1, Article ID 1250061, 2013. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  34. Y. Q. Xu, X. Y. Tang, F. B. Tian, Y. H. Peng, Y. Xu, and Y. J. Zeng, “IB-LBM simulation of the haemocyte dynamics in a stenotic capillary,” Computer Methods in Biomechanics and Biomedical Engineering, vol. 17, no. 9, pp. 978–985, 2014. View at Publisher · View at Google Scholar · View at Scopus
  35. X. Yang, X. Zhang, Z. Li, and G.-W. He, “A smoothing technique for discrete delta functions with application to immersed boundary method in moving boundary simulations,” Journal of Computational Physics, vol. 228, no. 20, pp. 7821–7836, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  36. Y. Cheng and H. Zhang, “Immersed boundary method and lattice Boltzmann method coupled FSI simulation of mitral leaflet flow,” Computers & Fluids, vol. 39, no. 5, pp. 871–881, 2010. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  37. Y. Q. Xu, F. B. Tian, H. J. Li, and Y. L. Deng, “Red blood cell partitioning and blood flux redistribution in microvascular bifurcation,” Theoretical and Applied Mechanics Letters, vol. 2, no. 2, Article ID 024001, 2012. View at Publisher · View at Google Scholar
  38. F.-B. Tian, “Role of mass on the stability of flag/flags in uniform flow,” Applied Physics Letters, vol. 103, no. 3, Article ID 034101, 2013. View at Publisher · View at Google Scholar · View at Scopus
  39. F.-B. Tian, H. X. Luo, L. D. Zhu, and X.-Y. Lu, “Coupling modes of three filaments in side-by-side arrangement,” Physics of Fluids, vol. 23, no. 11, Article ID 111903, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. W.-X. Huang and H. J. Sung, “An immersed boundary method for fluid-flexible structure interaction,” Computer Methods in Applied Mechanics and Engineering, vol. 198, no. 33–36, pp. 2650–2661, 2009. View at Publisher · View at Google Scholar · View at Scopus