Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2016, Article ID 3091039, 15 pages
http://dx.doi.org/10.1155/2016/3091039
Research Article

Machine Learning Approach to Automated Quality Identification of Human Induced Pluripotent Stem Cell Colony Images

1School of Information Sciences, University of Tampere, Kanslerinrinne 1, FI-33014 Tampere, Finland
2BioMediTech, University of Tampere, Biokatu 12, FI-33520 Tampere, Finland
3School of Medicine, University of Tampere, Biokatu 12, FI-33520 Tampere, Finland

Received 2 February 2016; Revised 16 May 2016; Accepted 2 June 2016

Academic Editor: Issam El Naqa

Copyright © 2016 Henry Joutsijoki et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Takahashi and S. Yamanaka, “Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors,” Cell, vol. 126, no. 4, pp. 663–676, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Amabile and A. Meissner, “Induced pluripotent stem cells: current progress and potential for regenerative medicine,” Trends in Molecular Medicine, vol. 15, no. 2, pp. 59–68, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Yamanaka, “A fresh look at iPS cells,” Cell, vol. 137, no. 1, pp. 13–17, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Takahashi, K. Tanabe, M. Ohnuki et al., “Induction of pluripotent stem cells from adult human fibroblasts by defined factors,” Cell, vol. 131, no. 5, pp. 861–872, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Zhang, G. F. Wilson, A. G. Soerens et al., “Functional cardiomyocytes derived from human induced pluripotent stem cells,” Circulation Research, vol. 104, no. 4, pp. e30–e41, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Zwi, O. Caspi, G. Arbel et al., “Cardiomyocyte differentiation of human induced pluripotent stem cells,” Circulation, vol. 120, no. 15, pp. 1513–1523, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Aalto-Setälä, B. R. Conklin, and B. Lo, “Obtaining consent for future research with induced pluripotent cells: opportunities and challenges,” PLoS Biology, vol. 7, no. 2, Article ID e1000042, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Tokunaga, N. Saitoh, I. G. Goldberg et al., “Computational image analysis of colony and nuclear morphology to evaluate human induced pluripotent stem cells,” Scientific Reports, vol. 4, article 6996, pp. 1–7, 2014. View at Publisher · View at Google Scholar · View at Scopus
  9. N. Orlov, L. Shamir, T. Macura, J. Johnston, D. M. Eckley, and I. G. Goldberg, “WND-CHARM: multi-purpose image classification using compound image transforms,” Pattern Recognition Letters, vol. 29, no. 11, pp. 1684–1693, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Shamir, N. Orlov, D. M. Eckley, T. Macura, J. Johnston, and I. G. Goldberg, “Wndchrm-an open source utility for biological image analysis,” Source Code for Biology and Medicine, vol. 3, article 13, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. C. G. Jeffreys, Support vector machine and parametric wavelet-based texture classification of stem cell images [M.S. thesis], Massachusetts Institute of Technology, Operations Research Center, Cambridge, Mass, USA, 2004.
  12. M. Paci, L. Nanni, A. Lahti, K. Aalto-Setälä, J. Hyttinen, and S. Severi, “Non-Binary coding for texture descriptors in sub-cellular and stem cell image classification,” Current Bioinformatics, vol. 8, no. 2, pp. 208–219, 2013. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Gizatdinova, J. Rasku, M. Haponen et al., “Investigating local spatiallyenhanced structural and textural descriptors for classification of iPSC colony images,” in Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3361–3365, Chicago, Ill, USA, August 2014. View at Publisher · View at Google Scholar
  14. H. Joutsijoki, M. Haponen, I. Baldin et al., “Histogram-based classification of iPSC colony images using machine learning methods,” in Proceedings of the IEEE International Conference on Systems, Man and Cybernetics (SMC '14), pp. 2611–2617, October 2014. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Joutsijoki, J. Rasku, M. Haponen et al., “Classification of iPSC colony images using hierarchical strategies with support vector machines,” in Proceedings of the 5th IEEE Symposium on Computational Intelligence and Data Mining (CIDM '14), pp. 86–92, IEEE, Orlando, Fla, USA, December 2014. View at Publisher · View at Google Scholar · View at Scopus
  16. J. C. Platt, N. Christiani, and J. Shawe-Taylor, “Large margin DAGs for multiclass classification,” in Advances in Neural Information Processing Systems, pp. 547–553, 2000. View at Google Scholar
  17. D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. D. G. Lowe, “Object recognition from local scale-invariant features,” in Proceedings of the 7th IEEE International Conference on Computer Vision (ICCV '99), vol. 2, pp. 1150–1157, Kerkyra, Greece, September 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. M.-E. Nilsback and A. Zisserman, “Automated flower classification over a large number of classes,” in Proceedings of the 6th Indian Conference on Computer Vision, Graphics & Image Processing (ICVGIP '08), pp. 722–729, December 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. M. S. Nixon and A. S. Aguado, Feature Extraction & Image Processing for Computer Vision, Academic Press, Oxford, UK, 3rd edition, 2012.
  21. O. Chapelle, P. Haffner, and V. N. Vapnik, “Support vector machines for histogram-based image classification,” IEEE Transactions on Neural Networks, vol. 10, no. 5, pp. 1055–1064, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. L. Bottou, C. Cortes, J. Denker et al., “Comparison of classifier methods: a case study in handwritten digit recognition,” in Proceedings of the 12th IAPR International Conference on Pattern Recognition, pp. 77–82, Jerusalem, Israel, 1994. View at Publisher · View at Google Scholar
  23. K. J. Cios, W. Pedrycz, R. W. Swiniarski, and L. A. Kurgan, Data Mining: A Knowledge Discovery Approach, Springer, New York, NY, USA, 2007.
  24. T. M. Cover and P. E. Hart, “Nearest neighbor pattern classification,” IEEE Transactions on Information Theory, vol. 13, no. 1, pp. 21–27, 1967. View at Publisher · View at Google Scholar
  25. R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, John Wiley & Sons, New York, NY, USA, 2nd edition, 2001.
  26. V. Mitra, C.-J. Wang, and S. Banerjee, “Text classification: a least square support vector machine approach,” Applied Soft Computing Journal, vol. 7, no. 3, pp. 908–914, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. H. R. Bittencourt and R. T. Clarke, “Use of classification and regression trees (CART) to classify remotely-sensed digital images,” in Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS '03), vol. 6, pp. 3751–3753, July 2003. View at Publisher · View at Google Scholar
  28. J. Huang, J. Lu, and C. X. Ling, “Comparing naive bayes, decision trees, and SVM with AUC and accuracy,” in Proceedings of the 3rd IEEE International Conference on Data Mining (ICDM '03), pp. 553–556, November 2003. View at Scopus
  29. T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning—Data Mining, Inference, and Prediction, Springer, New York, NY, USA, 2nd edition, 2009.
  30. T. Mar, S. Zaunseder, J. P. Martínez, M. Llamedo, and R. Poll, “Optimization of ECG classification by means of feature selection,” IEEE Transactions on Biomedical Engineering, vol. 58, no. 8, pp. 2168–2177, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Xie and Z. Qiu, “The effect of imbalanced data sets on LDA: a theoretical and empirical analysis,” Pattern Recognition, vol. 40, no. 2, pp. 557–562, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Agresti, Categorical Data Analysis, John Wiley & Sons, New York, NY, USA, 1990.
  33. A. P. de Barros, F. de Assis Tenório de Carvalho, and E. de Andrade Lima Neto, “A pattern classifier for interval-valued data based on multinomial logistic regression model,” in Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC '12), pp. 541–546, Seoul, South Korea, October 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. D. D. Lewis, “Naive (Bayes) at forty: the independence assumption in information retrieval,” in Proceedings of the 10th European Conference on Machine Learning, Chemnitz, Germany, April 1998, vol. 1398 of Lecture Notes in Artificial Intelligence, pp. 4–15, Springer, Berlin, Germany, 1998. View at Google Scholar
  35. Y. Zhung and J. Zhou, “A study on content-based music classification,” in Proceedings of the 7th International Symposium on Signal Processing and Its Applications (ISSPA '03), pp. 113–116, July 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. R. Debnath, N. Takahide, and H. Takahashi, “A decision based one-against-one method for multi-class support vector machine,” Pattern Analysis and Applications, vol. 7, no. 2, pp. 164–175, 2004. View at Google Scholar · View at Scopus
  37. C.-W. Hsu and C.-J. Lin, “A comparison of methods for multiclass support vector machines,” IEEE Transactions on Neural Networks, vol. 13, no. 2, pp. 415–425, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. H. Joutsijoki and M. Juhola, “DAGSVM vs. DAGKNN: an experimental case study with benthic macroinvertebrate dataset,” in Machine Learning and Data Mining in Pattern Recognition, P. Perner, Ed., vol. 7376 of Lecture Notes in Computer Science, pp. 439–453, Springer, Berlin, Germany, 2012. View at Publisher · View at Google Scholar
  39. M. Luckner, “Reducing number of classifiers in DAGSVM based on class similarity,” in Image Analysis and Processing—ICIAP 2011, G. Maino and G. L. Foresti, Eds., vol. 6978 of Lecture Notes in Computer Science, pp. 514–523, Springer, New York, NY, USA, 2011. View at Publisher · View at Google Scholar
  40. J. Martínez, C. Iglesias, J. M. Matías, J. Taboada, and M. Araújo, “Solving the slate tile classification problem using a DAGSVM multiclassification algorithm based on SVM binary classifiers with a one-versus-all approach,” Applied Mathematics and Computation, vol. 230, pp. 464–472, 2014. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Galar, A. Fernández, E. Barrenechea, H. Bustince, and F. Herrera, “An overview of ensemble methods for binary classifiers in multi-class problems: experimental study on one-vs-one and one-vs-all schemes,” Pattern Recognition, vol. 44, no. 8, pp. 1761–1776, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. H. Joutsijoki and M. Juhola, “Comparing the one-vs-one and one-vs-all methods in benthic macroinvertebrate image classification,” in Proceedings of the 7th International Conference on Machine Learning and Data Mining, New York, NY, USA, August-September 2011, vol. 6871 of Lecture Notes in Artificial Intelligence, pp. 399–413, Springer, Berlin, Germany, 2011. View at Google Scholar
  43. R. Rifkin and A. Klautau, “In defense of one-vs-all classification,” Journal of Machine Learning Research, vol. 5, pp. 101–141, 2004. View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  44. U. Krebel, “Pairwise classification and support vector machines,” in Advances in Kernel Methods—Support Vector Learning, MIT Press, Cambridge, Mass, USA, 1999. View at Google Scholar
  45. E. Frank and S. Kramer, “Ensembles of nested dichotomies for multi-class problems,” in Proceedings of the 21st International Conference on Machine Learning, pp. 305–312, 2004.
  46. F. Schwenker and G. Palm, “Tree-structured support vector machines for multi-class pattern recognition,” in Multiple Classifier Systems, J. Kittler and F. Roli, Eds., vol. 2096 of Lecture Notes in Computer Science, pp. 409–417, Springer, Berlin, Germany, 2001. View at Publisher · View at Google Scholar
  47. T. Van Gestel, J. A. K. Suykens, B. Baesens et al., “Benchmarking least squares support vector machine classifiers,” Machine Learning, vol. 54, no. 1, pp. 5–32, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. J. A. K. Suykens and J. Vandewalle, “Least squares support vector machine classifiers,” Neural Processing Letters, vol. 9, no. 3, pp. 293–300, 1999. View at Publisher · View at Google Scholar · View at Scopus
  49. J. A. K. Suykens and J. Vandewalle, “Multiclass least squares support vector machines,” in Proceedings of the International Joint Conference on Neural Networks (IJCNN '99), pp. 900–903, Washington, DC, USA, July 1999. View at Scopus
  50. J. A. K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, and J. Vandewalle, Least Squares Support Vector Machines, World Scientific, River Edge, NJ, USA, 2002.
  51. E. D. Übeylï, “Least squares support vector machine employing model-based methods coefficients for analysis of EEG signals,” Expert Systems with Applications, vol. 37, no. 1, pp. 233–239, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. S. Abe, Support Vector Machines for Pattern Recognition, Springer, London, UK, 2nd edition, 2010.
  53. C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20, no. 3, pp. 273–297, 1995. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  54. V. N. Vapnik, The Nature of Statistical Learning Theory, Springer, New York, NY, USA, 2nd edition, 2000. View at Publisher · View at Google Scholar
  55. A. C. Lorena, A. C. P. L. De Carvalho, and J. M. P. Gama, “A review on the combination of binary classifiers in multiclass problems,” Artificial Intelligence Review, vol. 30, no. 1–4, pp. 19–37, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. H. Lei and V. Govindaraju, “Half-Against-Half multi-class support vector machines,” in Proceedings of the 6th International Workshop on Multiple Classifier Systems, Seaside, Calif, USA, June 2005, vol. 3541 of Lecture Notes in Computer Science, pp. 156–164, Springer, Berlin, Germany, 2005. View at Google Scholar
  57. H. Joutsijoki, “Half-against-half multi-class support vector machines in classification of benthic macroinvertebrate images,” in Proceedings of the International Conference on Computer and Information Science (ICCIS '12), pp. 414–419, IEEE, Kuala Lumpeu, Malaysia, June 2012. View at Publisher · View at Google Scholar · View at Scopus
  58. X. Zhang, Y. Yin, and H. Huang, “Half-against-half multi-class text classification using progressive transductive support vector machine,” in Proceedings of the 1st International Conference on Information Science and Engineering (ICISE '09), pp. 866–869, IEEE, Nanjing, China, December 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. X. Yang, Q. Yu, L. He, and T. Guo, “The one-against-all partition based binary tree support vector machine algorithms for multi-class classification,” Neurocomputing, vol. 113, no. 3, pp. 1–7, 2013. View at Publisher · View at Google Scholar · View at Scopus
  60. A. L. Lahti, V. J. Kujala, H. Chapman et al., “Model for long QT syndrome type 2 using human iPS cells demonstrates arrhythmogenic characteristics in cell culture,” DMM Disease Models and Mechanisms, vol. 5, no. 2, pp. 220–230, 2012. View at Publisher · View at Google Scholar · View at Scopus
  61. T. Ojala, M. Pietikäinen, and D. Harwood, “A comparative study of texture measures with classification based on feature distributions,” Pattern Recognition, vol. 29, no. 1, pp. 51–59, 1996. View at Publisher · View at Google Scholar · View at Scopus
  62. T. Ojala, M. Pietikainen, and D. Harwood, “Performance evaluation of texture measures with classification based on Kullback discrimination of distributions,” in Proceedings of the 12th International Conference on Pattern Recognition, pp. 582–585, Jerusalem, Israel, 1994. View at Publisher · View at Google Scholar
  63. A. Vedaldi and B. Fulkerson, “VLFeat: an open and portable library of computer vision algorithms,” 2008, http://www.vlfeat.org/.
  64. A. Cruz-Roa, J. C. Caicedo, and F. A. González, “Visual pattern mining in histology image collections using bag of features,” Artificial Intelligence in Medicine, vol. 52, no. 2, pp. 91–106, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. G. Csurka, C. R. Dance, L. Fan, J. Willamowski, and C. Bray, “Visual categorization with bags of keypoints,” in Proceedings of the ECCV International Workshop on Statistical Learning in Computer Vision, 2004.
  66. E. Nowak, F. Jurie, and B. Triggs, “Sampling strategies for bag-of-features image classification,” in Computer Vision—ECCV 2006, A. Leonardis, H. Bischof, and A. Pinz, Eds., vol. 3954 of Lecture Notes in Computer Science, pp. 490–503, Springer, Berlin, Germany, 2006. View at Publisher · View at Google Scholar
  67. C.-L. Liu, K. Nakashima, H. Sako, and H. Fujisawa, “Handwritten digit recognition: benchmarking of state-of-the-art techniques,” Pattern Recognition, vol. 36, no. 10, pp. 2271–2285, 2003. View at Publisher · View at Google Scholar · View at Scopus
  68. A. Statnikov, I. Tsamardinos, Y. Dosbayev, and C. F. Aliferis, “GEMS: a system for automated cancer diagnosis and biomarker discovery from microarray gene expression data,” International Journal of Medical Informatics, vol. 74, no. 7-8, pp. 491–503, 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. A. Statnikov, L. Wang, and C. F. Aliferis, “A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification,” BMC Bioinformatics, vol. 9, article 319, pp. 1–10, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. S. Varma and R. Simon, “Bias in error estimation when using cross-validation for model selection,” BMC Bioinformatics, vol. 7, article 91, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. J. Wu, H. Liu, X. Duan et al., “Prediction of DNA-binding residues in proteins from amino acid sequences using a random forest model with a hybrid feature,” Bioinformatics, vol. 25, no. 1, pp. 30–35, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. H. Joutsijoki, K. Meissner, M. Gabbouj et al., “Evaluating the performance of artificial neural networks for the classification of freshwater benthic macroinvertebrates,” Ecological Informatics, vol. 20, pp. 1–12, 2014. View at Publisher · View at Google Scholar · View at Scopus
  73. M. Juhola and V. Siermala, “A scatter method for data and variable importance evaluation,” Integrated Computer-Aided Engineering, vol. 19, no. 2, pp. 137–139, 2012. View at Publisher · View at Google Scholar · View at Scopus
  74. M. Paci, L. Nanni, and S. Severi, “An ensemble of classifiers based on different texture descriptors for texture classification,” Journal of King Saud University-Science, vol. 25, no. 3, pp. 235–244, 2013. View at Publisher · View at Google Scholar · View at Scopus
  75. J. Zhang, M. Marszałek, S. Lazebnik, and C. Schmid, “Local features and kernels for classification of texture and object categories: a comprehensive study,” International Journal of Computer Vision, vol. 73, no. 2, pp. 213–238, 2007. View at Publisher · View at Google Scholar · View at Scopus