Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2017 (2017), Article ID 2579848, 8 pages
https://doi.org/10.1155/2017/2579848
Research Article

A Web-Based Tool for Automatic Data Collection, Curation, and Visualization of Complex Healthcare Survey Studies including Social Network Analysis

1Department of Electrical and Systems Engineering, Universidad de León, Campus de Vegazana, s/n, 24071 León, Spain
2Department of Computer Science, Universidad de Oviedo, C/Calvo Sotelo, s/n, 33007 Oviedo, Spain
3SALBIS Research Group, Facultad de Ciencias de la Salud, Campus de Ponferrada, Avda Astorga, s/n, Ponferrada, 24402 León, Spain
4GIGAS Research Group, Facultad de Ciencias de la Salud, Campus de Vegazana, s/n, 24071 León, Spain

Correspondence should be addressed to José Alberto Benítez; se.noelinu@anebj

Received 17 February 2017; Accepted 12 April 2017; Published 26 April 2017

Academic Editor: Ernestina Menasalvas

Copyright © 2017 José Alberto Benítez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. J. Carney and C. M. Shea, “Informatics metrics and measures for a smart public health systems approach: information science perspective,” Computational and Mathematical Methods in Medicine, vol. 2017, Article ID 1452415, 12 pages, 2017. View at Publisher · View at Google Scholar
  2. F. F. Ishtaiwa and I. M. Aburezeq, “The impact of Google Docs on student collaboration: a UAE case study,” Learning, Culture and Social Interaction, vol. 7, pp. 85–96, 2015. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Gordon, “SurveyMonkey.com—web-based survey and evaluation system,” The Internet and Higher Education, vol. 5, no. 1, pp. 83–87, 2002. View at Publisher · View at Google Scholar
  4. C. E. Currie, R. A. Elton, J. Todd, and S. Platt, “Indicators of socioeconomic status for adolescents: the WHO health behaviour in school-aged children survey,” Health Education Research, vol. 12, no. 3, pp. 385–397, 1997. View at Publisher · View at Google Scholar · View at Scopus
  5. A. L. M. Andrade, R. B. de Lacerda, H. P. Gomide et al., “Web-based self-help intervention reduces alcohol consumption in both heavy-drinking and dependent alcohol users: a pilot study,” Addictive Behaviors, vol. 63, pp. 63–71, 2016. View at Publisher · View at Google Scholar · View at Scopus
  6. M.-T. Cortés-Tomás, J.-A. Giménez-Costa, P. Motos-Sellés, and M.-D. Sancerni-Beitia, “Different versions of the Alcohol Use Disorders Identification Test (AUDIT) as screening instruments for underage binge drinking,” Drug and Alcohol Dependence, vol. 158, pp. 52–59, 2016. View at Publisher · View at Google Scholar · View at Scopus
  7. G. T. Lapham, A. D. Rubinsky, E. C. Williams et al., “Decreasing sensitivity of clinical alcohol screening with the AUDIT-C after repeated negative screens in VA clinics,” Drug and Alcohol Dependence, vol. 142, pp. 209–215, 2014. View at Google Scholar
  8. M. J. Pardo-Guijarro, B. Woll, P. Moya-Martínez, M. Martínez-Andrés, E. E. Cortés-Ramírez, and V. Martínez-Vizcaíno, “Validity and reliability of the Spanish sign language version of the KIDSCREEN-27 health-related quality of life questionnaire for use in deaf children and adolescents,” Gaceta Sanitaria, vol. 27, no. 4, pp. 318–324, 2013. View at Google Scholar
  9. C. M. Vélez, L. H. Lugo, and H. I. García, “Validez y confiabilidad del ‘Cuestionario de calidad de vida KIDSCREEN-27’ versión padres, en Medellín, Colombia,” Revista Colombiana de Psiquiatría, vol. 41, no. 3, pp. 588–605, 2012. View at Google Scholar
  10. M. de S. y Consumo, “Encuesta sobre el uso de drogas en enseñanzas secundarias,” 2016, http://www.pnsd.msssi.gob.es/profesionales/sistemasInformacion/sistemaInformacion/pdf/2016_Informe_ESTUDES.pdf. View at Google Scholar
  11. M. Steketee, H. Jonkman, H. Berten, and N. Vettenburg, Alcohol use among adolescents in Europe. Environmental research and preventive actions, Verwey-Jonker Instituut, Utrecht, Netherlands, 2013.
  12. T. F. Babor, J. C. Higgins-Biddle, J. B. Saunders, and M. G. Monteiro, The Alcohol Use Disorders Identification Test Guidelines for Use in Primary Care, World Health Organization Department of Mental Health and Substance Dependence, 2nd edition, 2001.
  13. T. K. G. Europe, “The KIDSCREEN Questionnaires—quality of life questionnaires for children and adolescents,” 2006.
  14. M. Schwarzer and R. Jerusalem, “Generalized self-efficacy scale,” in Meas. Heal. Psychol. A User’s Portfolio. Causal Control Beliefs, J. Weinman, S. Wright, and M. Johnston, Eds., pp. 35–37, NFER-NELSON, Windsor, UK, 1995. View at Google Scholar
  15. T. F. Babor, J. C. Higgins-biddle, J. B. Saunders, and M. G. Monteiro, Cuestionario de Identificación de los Transtornos debidos al Consumo de Alcohol Pautas para su utilización en Atención Primaria, vol. 6, Organización Mundial de la Salud, 2001.
  16. O. V. Popik, T. V. Ivanisenko, O. V. Saik, E. D. Petrovskiy, I. N. Lavrik, and V. A. Ivanisenko, “NACE: a web-based tool for prediction of intercompartmental efficiency of human molecular genetic networks,” Virus Research, vol. 218, pp. 79–85, 2016. View at Publisher · View at Google Scholar · View at Scopus
  17. A. P. P. FATEC, G. F. UFG, and R. Z. USP, “Application of the Louvain Community Detection,” 2014.
  18. L. F. S. Borgatti and M. Everett, Ucinet for windows: software for social network analysis, Anal. Technol., Harvard, MA, USA, 2002.
  19. G. Robins, “A tutorial on methods for the modeling and analysis of social network data,” Journal of Mathematical Psychology, vol. 57, no. 6, pp. 261–274, 2013. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  20. J. Powell, M. Hopkins, J. Powell, and M. Hopkins, “18—drawing and serializing graphs,” in A Librarian’s Guide to Graphs, Data and the Semantic Web, pp. 153–166, 2015. View at Google Scholar
  21. D. Nettleton and D. Nettleton, “Chapter e16—analysis of data on the internet III—online social network analysis,” in Commercial Data Mining, pp. e27–e42, 2014. View at Google Scholar
  22. R.-D. Leon, R. Rodríguez-Rodríguez, P. Gómez-Gasquet, and J. Mula, “Social network analysis: a tool for evaluating and predicting future knowledge flows from an insurance organization,” Technological Forecasting and Social Change Social, vol. 114, pp. 103–118, 2017. View at Publisher · View at Google Scholar
  23. S. P. Borgatti and M. G. Everett, “Network analysis of 2-mode data,” Social Networks, vol. 19, no. 3, pp. 243–269, 1997. View at Publisher · View at Google Scholar · View at Scopus
  24. T. A. B. Snijders, A. Lomi, and V. J. Torló, “A model for the multiplex dynamics of two-mode and one-mode networks, with an application to employment preference, friendship, and advice,” Social Networks, vol. 35, no. 2, pp. 265–276, 2013. View at Publisher · View at Google Scholar · View at Scopus
  25. N. Ozaki, H. Tezuka, and M. Inaba, “A Simple Acceleration Method for the Louvain Algorithm,” International Journal of Computer and Electrical Engineering, vol. 8, no. 3, pp. 207–218, 2016. View at Publisher · View at Google Scholar
  26. M. Dabkowski, R. Breiger, and F. Szidarovszky, “Simultaneous-direct blockmodeling for multiple relations in Pajek,” Social Networks, vol. 40, no. 1, pp. 1–16, 2015. View at Publisher · View at Google Scholar · View at Scopus