Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2017, Article ID 9463010, 10 pages
https://doi.org/10.1155/2017/9463010
Research Article

Simulation of Atrial Fibrosis Using Coupled Myocyte-Fibroblast Cellular and Human Atrial Models

Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China

Correspondence should be addressed to Yinglan Gong; nc.ude.ujz@gnognalgniy and Ling Xia; nc.ude.ujz@gnilaix

Received 3 July 2017; Revised 10 November 2017; Accepted 3 December 2017; Published 26 December 2017

Academic Editor: Marta Parazzini

Copyright © 2017 Yuan Gao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Piek, R. A. de Boer, and H. H. W. Silljé, “The fibrosis-cell death axis in heart failure,” Heart Failure Reviews, vol. 21, no. 2, pp. 199–211, 2016. View at Publisher · View at Google Scholar · View at Scopus
  2. S. D. Prabhu and N. G. Frangogiannis, “The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis,” Circulation Research, vol. 119, no. 1, pp. 91–112, 2016. View at Publisher · View at Google Scholar
  3. B. J. Hansen, J. Zhao, T. A. Csepe et al., “Atrial fibrillation driven by micro-anatomic intramural re-entry revealed by simultaneous sub-epicardial and sub-endocardial optical mapping in explanted human hearts,” European Heart Journal, vol. 36, no. 35, pp. 2390–2401, 2015. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Cochet, A. Mouries, H. Nivet et al., “Age, atrial fibrillation, and structural heart disease are the main determinants of left atrial fibrosis detected by delayed-enhanced magnetic resonance imaging in a general cardiology population,” Journal of Cardiovascular Electrophysiology, vol. 26, no. 5, pp. 484–492, 2015. View at Publisher · View at Google Scholar · View at Scopus
  5. N. F. Marrouche, D. Wilber, G. Hindricks et al., “Association of atrial tissue fibrosis identified by delayed enhancement MRI and atrial fibrillation catheter ablation: the DECAAF Study,” Journal of the American Medical Association, vol. 311, no. 5, pp. 498–506, 2014. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Verheule, T. Sato, T. Everett et al., “Increased vulnerability to atrial fibrillation in transgenic mice with selective atrial fibrosis caused by overexpression of TGF-β1,” Circulation Research, vol. 94, no. 11, pp. 1458–1465, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. V. Nagpal, R. Rai, A. T. Place et al., “Response to letter regarding article, “MiR-125b is critical for fibroblast-to-myofibroblast transition and cardiac fibrosis”,” Circulation, vol. 133, no. 24, pp. e714–e714, 2016. View at Publisher · View at Google Scholar
  8. J. Pellman, J. Zhang, and F. Sheikh, “Myocyte-fibroblast communication in cardiac fibrosis and arrhythmias: mechanisms and model systems,” Journal of Molecular and Cellular Cardiology, vol. 94, pp. 22–31, 2016. View at Publisher · View at Google Scholar · View at Scopus
  9. S. L. K. Bowers and T. A. Baudino, “Cardiac myocyte-fibroblast interactions and the coronary vasculature,” Journal of Cardiovascular Translational Research, vol. 5, no. 6, pp. 783–793, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Miragoli, G. Gaudesius, and S. Rohr, “Electrotonic modulation of cardiac impulse conduction by myofibroblasts,” Circulation Research, vol. 98, no. 6, pp. 801–810, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Zahid, H. Cochet, P. M. Boyle et al., “Patient-derived models link re-entrant driver localization in atrial fibrillation to fibrosis spatial pattern,” Cardiovascular Research, vol. 110, no. 3, pp. 443–454, 2016. View at Publisher · View at Google Scholar · View at Scopus
  12. M. M. Maleckar, J. L. Greenstein, W. R. Giles, and N. A. Trayanova, “Electrotonic coupling between human atrial myocytes and fibroblasts alters myocyte excitability and repolarization,” Biophysical Journal, vol. 97, no. 8, pp. 2179–2190, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Courtemanche, R. J. Ramirez, and S. Nattel, “Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model,” American Journal of Physiology-Heart and Circulatory Physiology, vol. 275, no. 1, pp. 301–321, 1998. View at Google Scholar · View at Scopus
  14. K. A. MacCannell, H. Bazzazi, L. Chilton, Y. Shibukawa, R. B. Clark, and W. R. Giles, “A mathematical model of electrotonic interactions between ventricular myocytes and fibroblasts,” Biophysical Journal, vol. 92, no. 11, pp. 4121–4132, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Zhan and L. Xia, “Excitation-contraction coupling between human atrial myocytes with fibroblasts and stretch activated channel current: a simulation study,” Computational and Mathematical Methods in Medicine, vol. 2013, no. 3, Article ID 238676, 9 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Vasquez, A. P. Moreno, and E. J. Berbari, “Modeling fibroblast-mediated conduction in the ventricle,” Computers in Cardiology, pp. 349–352, 2004. View at Google Scholar · View at Scopus
  17. M. B. Rook, A. C. G. Van Ginneken, B. de Jonge, A. El Aoumari, D. Gros, and H. J. Jongsma, “Differences in gap junction channels between cardiac myocytes, fibroblasts, and heterologous pairs,” American Journal of Physiology-Cell Physiology, vol. 263, no. 5, pp. C959–C977, 1992. View at Google Scholar · View at Scopus
  18. L. Xia, Y. Gao, Q. Lu, D. Zheng, D. D. Deng, and L. Xia, “Preliminary simulation study of atrial fibrillation treatment procedure based on a detailed human atrial model,” Journal of Clinical Trials in Cardiology, vol. 2, no. 4, pp. 1–9, 2015. View at Publisher · View at Google Scholar
  19. D.-D. Deng, Y.-L. Gong, G.-F. Shou et al., “Simulation of biatrial conduction via different pathways during sinus rhythm with a detailed human atrial model,” Journal of Zhejiang University Science B, vol. 13, no. 9, pp. 676–694, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. D. Deng, P. Jiao, X. Ye, and L. Xia, “An image-based model of the whole human heart with detailed anatomical structure and fiber orientation,” Computational and Mathematical Methods in Medicine, vol. 2012, no. 3, Article ID 891070, pp. 449–461, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Zhang, L. Xia, Y. Gong, L. Chen, G. Hou, and M. Tang, “Parallel solution in simulation of cardiac excitation anisotropic propagation,” in International Conference on Functional Imaging and Modeling of the Heart, Lecture Notes in Computer Science, pp. 170–179, 2007. View at Google Scholar
  22. M. Potse, B. Dubé, A. Vinet, and R. Cardinal, “A comparison of monodomain and bidomain propagation models for the human heart,” in Proceedings of the 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, (EMBS '06), pp. 3895–3898, New York, NY, USA, September 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. B. J. Roth, “Electrical conductivity values used with the bidomain model of cardiac tissue,” IEEE Transactions on Biomedical Engineering, vol. 44, no. 4, pp. 326–328, 1997. View at Publisher · View at Google Scholar · View at Scopus
  24. L. Xia, M. Huo, Q. Wei, F. Liu, and S. Crozier, “Electrodynamic heart model construction and ECG simulation,” Methods of Information in Medicine, vol. 45, no. 5, pp. 564–573, 2006. View at Google Scholar · View at Scopus
  25. G. Shou, L. Xia, M. Jiang, F. Liu, and S. Crozier, “Forward and inverse solutions of electrocardiography problem using an adaptive BEM method,” International Conference on Functional Imaging and Modeling of the Heart, pp. 290–299, 2007. View at Google Scholar
  26. P. Kligfield, L. S. Gettes, J. J. Bailey et al., “Recommendations for the standardization and interpretation of the electrocardiogram,” Heart Rhythm the Official Journal of the Heart Rhythm Society, vol. 115, no. 10, pp. 1306–1324, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. P. Camelliti, T. K. Borg, and P. Kohl, “Structural and functional characterisation of cardiac fibroblasts,” Cardiovascular Research, vol. 65, no. 1, pp. 40–51, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Verheule, T. Sat, T. IV. Everett et al., “Increased vulnerability to atrial fibrillation in transgenic mice with selective atrial fibrosis caused by overexpression of TGF-β1,” Circulation Research, vol. 94, no. 11, pp. 1458–1465, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. F. Zhang, M. Tang, W. Wang, L. Chen, and D. O. Cardiology, “The effection of spironolactone on spontaneous hypertensive rat's left atrial fibrosis and it's atrial vulnerability,” Journal of Clinical Cardiology, 2015. View at Google Scholar
  30. T. T. Win, B. A. Venkatesh, G. J. Volpe et al., “Associations of electrocardiographic P-wave characteristics with left atrial function, and diffuse left ventricular fibrosis defined by cardiac magnetic resonance: the PRIMERI study,” Heart Rhythm, vol. 12, no. 1, pp. 155–162, 2015. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Maheshwari, F. L. Norby, E. Z. Soliman et al., “Relation of prolonged p-wave duration to risk of sudden cardiac death in the general population (from the Atherosclerosis risk in communities study),” American Journal of Cardiology, vol. 119, no. 9, pp. 1302–1306, 2017. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Rosenheck, “Signal-averaged P wave in patients with paroxysmal atrial fibrillation,” Pacing and Clinical Electrophysiology Pace, vol. 20, no. 10, pp. 2577–2586, 1997. View at Publisher · View at Google Scholar · View at Scopus
  33. P. G. Platonov, J. Carlson, M. P. Ingemansson et al., “Detection of inter-atrial conduction defects with unfiltered signal-averaged P-wave ECG in patients with lone atrial fibrillation,” Europace: European Pacing, Arrhythmias, and Cardiac Electrophysiology, vol. 2, no. 1, pp. 32–41, 2000. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Carlson, R. Johansson, and S. Olsson, “Classification of electrocardiographic P-wave morphology,” in Proceedings of the 39th IEEE Conference on Decision and Control, pp. 1804–1809, Sydney, NSW, Australia. View at Publisher · View at Google Scholar
  35. F. Sadiq Ali, A. Enriquez, D. Redfearn, and A. Baranchuk, “P-wave pseudonormalization after iatrogenic coronary sinus isolation,” Journal of Electrocardiology, vol. 49, no. 1, pp. 13-14, 2016. View at Publisher · View at Google Scholar · View at Scopus
  36. P. Kellman and A. E. Arai, “Cardiac imaging techniques for physicians: late enhancement,” Journal of Magnetic Resonance Imaging, vol. 36, no. 3, pp. 529–542, 2012. View at Publisher · View at Google Scholar · View at Scopus