Computational and Mathematical Methods in Medicine

Computational Intelligence Methods for Brain-Machine Interfacing or Brain-Computer Interfacing


Publishing date
01 Nov 2020
Status
Closed
Submission deadline
03 Jul 2020

Lead Editor

1Jiangnan University, Wuxi, China

2PDPM Indian Institute of Information Technology Design and Manufacturing, Jabalpur, India

3China University of Mining Technology, Xuzhou, China

4University of South Florida, Tampa, USA

5Tongji University, Shanghai, China

This issue is now closed for submissions.
More articles will be published in the near future.

Computational Intelligence Methods for Brain-Machine Interfacing or Brain-Computer Interfacing

This issue is now closed for submissions.
More articles will be published in the near future.

Description

Brain-machine interfacing or brain-computer interfacing (BMI/BCI) is an emerging and challenging technology used in engineering and neuroscience, with the end goal of providing a pathway from the brain to the external world via mapping, assisting, augmenting, or repairing human cognitive or sensory-motor functions. Recently, many computational intelligence methods have appeared, such as deep learning and transfer learning. Deep learning methods have achieved great success in areas such as image and video analysis, natural language processing, and speech recognition and have also started to find applications in BMI/BCI. Transfer learning makes use of data or knowledge gained in solving one problem to help solve a different, albeit related, problem and can be particularly useful in BMI/BCI to cope with variability across individuals or tasks, accelerating learning and improving performance. Deep learning and transfer learning can also be integrated to take advantage of both domains.

Although the study of brain-machine interfaces using computational intelligence methods has become more popular, there are many unsolved fundamental problems, such as deep learning representation of some EEG-based BMI/BCI data from multiple modalities, mapping data from one modality to another to achieve cross-source BMI/BCI data analysis, identifying and utilizing relations between elements from two or more different signal sources for comprehensive BMI/BCI data analysis, fusing information from two or more signal sources to perform a more accurate prediction, transferring knowledge between modalities and their representations, and recovering missing modality data given the observed ones.

In the past decade, several EEG-based BMI/BCI methods and technologies have been developed and have shown promising results in real-world applications such as neuroscience, medicine, and rehabilitation. This has led to a proliferation of papers showing and comparing the accuracy and performance of these technologies; however, many of these have not advanced to real-time translation or application. For all the reasons mentioned above, it is important to exploit and develop effective computational intelligence algorithms for addressing fundamental issues in the field of BMI/BCI.

This Special Issue aims to provide a forum for researchers from BMI/BCI and computational intelligence to present recent progress in computational intelligence research with applications to BMI/BCI data. We welcome original research articles that contain detailed experimental analysis and related clinical translations, as well as related review articles discussing the current state of the art.

Potential topics include but are not limited to the following:

  • Computational intelligence methods for BMI/BCI signal processing, for example, Independent Component Analysis (ICA), Common Spatial Pattern (CSP), Canonical Correlation Analysis (CCA), and so forth
  • Computational intelligence methods for BMI/BCI feature extraction, for example, time-domain, frequency domain, time-frequency domain, spatiotemporal features, and so forth
  • Computational intelligence methods for BMI/BCI pattern recognition, for example, deep learning, transfer learning, ensemble learning, reinforcement learning, multitask learning, multiview learning, and so forth
  • Invasive and noninvasive BCIs
  • Online and offline BCI applications
  • Different modalities of BCIs, for example, Electroencephalogram (EEG), Magnetoencephalography (MEG), Functional Magnetic Resonance Imaging (fMRI), Functional Near-infrared Spectroscopy (fNIRS), Electrocorticography (ECoG), Spikes, Local Field Potentials (LFPs), and so forth

Articles

  • Special Issue
  • - Volume 2021
  • - Article ID 8072126
  • - Research Article

TAP Test Image Dynamic Tracking Study after Thyroid Cancer Surgery and after Radiotherapy and Chemotherapy

Changliang Wang | Yongxue Gu | ... | Meili Chen
  • Special Issue
  • - Volume 2020
  • - Article ID 6056383
  • - Research Article

Task Transfer Learning for EEG Classification in Motor Imagery-Based BCI System

Xuanci Zheng | Jie Li | ... | Gao Tianhao
  • Special Issue
  • - Volume 2020
  • - Article ID 3189676
  • - Research Article

DRG-Oriented Mathematical Calculation Model and Method of Integrated Medical Service Cost

Xiaowei Sun | Yi Zhu
  • Special Issue
  • - Volume 2020
  • - Article ID 7980249
  • - Research Article

EEG-Based Epilepsy Recognition via Multiple Kernel Learning

Yufeng Yao | Yan Ding | ... | Zhiming Cui
  • Special Issue
  • - Volume 2020
  • - Article ID 7613569
  • - Review Article

Intelligent Rehabilitation Assistance Tools for Distal Radius Fracture: A Systematic Review Based on Literatures and Mobile Application Stores

Yalan Chen | Yijun Yu | ... | Guheng Wang
  • Special Issue
  • - Volume 2020
  • - Article ID 1793517
  • - Research Article

Automatic Detection of Coronary Metallic Stent Struts Based on YOLOv3 and R-FCN

Xiaolu Jiang | Yanqiu Zeng | ... | Fei Chen
  • Special Issue
  • - Volume 2020
  • - Article ID 1683013
  • - Research Article

Instance Transfer Subject-Dependent Strategy for Motor Imagery Signal Classification Using Deep Convolutional Neural Networks

Kai Zhang | Guanghua Xu | ... | Nan Duan
  • Special Issue
  • - Volume 2020
  • - Article ID 7108147
  • - Research Article

Design and Development of Virtual Medical System Interface Based on VR-AR Hybrid Technology

Xu Cong | Tingting Li
  • Special Issue
  • - Volume 2020
  • - Article ID 7574531
  • - Research Article

DE-CNN: An Improved Identity Recognition Algorithm Based on the Emotional Electroencephalography

Yingdong Wang | Qingfeng Wu | ... | Qunsheng Ruan
  • Special Issue
  • - Volume 2020
  • - Article ID 4568509
  • - Research Article

Patient-Specific CT-Based Fluid-Structure-Interaction Aorta Model to Quantify Mechanical Conditions for the Investigation of Ascending Aortic Dilation in TOF Patients

Heng Zuo | Yunfei Ling | ... | Xiaobo Zhou
Computational and Mathematical Methods in Medicine
 Journal metrics
Acceptance rate32%
Submission to final decision46 days
Acceptance to publication39 days
CiteScore3.400
Impact Factor1.770
 Submit