Concepts in Magnetic Resonance Part A, Bridging Education and Research
Publishing Collaboration
More info
Wiley Hindawi logo
 Journal metrics
Acceptance rate-
Submission to final decision-
Acceptance to publication-
CiteScore0.600
Impact Factor0.560

A Statistical Robust Approach to Design Parallel Transmit Radiofrequency Excitations in MRI

Read the full article

 Journal profile

Concepts in Magnetic Resonance Part A publishes research concerning the applications of magnetic resonance techniques, including magnetic resonance imaging (MRI), nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR).

 Editor spotlight

Concepts in Magnetic Resonance Part A maintains an Editorial Board of practicing researchers from around the world, to ensure manuscripts are handled by editors expert and up-to-date in the field of study.

 Special Issues

Do you think there is an emerging area of research that really needs to be highlighted? Or an existing research area that has been overlooked or would benefit from deeper investigation? Raise the profile of a research area by leading a Special Issue.

Latest Articles

More articles
Research Article

Solution of the Bloch Equations including Relaxation

The magnetization differential equations of Bloch are integrated using a matrix diagonalization method. The solution describes several limiting cases and leads to compact expressions of wide validity for a spin ensemble initially at equilibrium.

Research Article

Lineshape of Magnetic Resonance and its Effects on Free Induction Decay and Steady-State Free Precession Signal Formation

Magnetic resonance imaging based on steady-state free precision (SSFP) sequences is a fast method to acquire , , and -weighted images. In inhomogeneous tissues such as lung tissue or blood vessel networks, however, microscopic field inhomogeneities cause a nonexponential free induction decay and a non-Lorentzian lineshape. In this work, the SSFP signal is analyzed for different prominent tissue models. Neglecting the effect of non-Lorentzian lineshapes can easily result in large errors of the determined relaxation times. Moreover, sequence parameters of SSFP measurements can be optimized for the nonexponential signal decay in many tissue structures.

Research Article

Brain and Hepatic Glucose Utilization in Malarial Infection Does Not Depend on Cerebral Symptoms of the Disease

Cerebral malaria causes several deaths every year. Global metabolic alteration, specifically hypoglycemia and lactic acidosis are hallmarks of severe malaria. Glucose being the major fuel source for the brain, it is important to understand cerebral glucose utilization in the host during cerebral complications of the disease that may have a significant role in cerebral pathogenesis. We have used 13C NMR spectroscopy to understand glucose utilization in the brain and liver of mice with cerebral malaria (CM), noncerebral malaria (NCM), and in control mice. Animals were challenged with intravenous glucose bolus followed by metabolic profiling of brain and liver extracts. Our result suggests a differential glucose utilization in the malaria group with respect to that of controls, while no difference between CM and NCM.

Research Article

Magic Angle Spinning and Truncated Field Concept in NMR

In order to thoroughly comprehend and adequtely interpret NMR data, it is necessary to perceive the complex structure of spin Hamiltonian. Although NMR principles have been extensively discussed in a number of distinguished introductory publications, it still remains difficult to find illustrative graphical models revealing the tensorial nature of spin interaction. Exposure of the structure standing behind mathematical formulas can clarify intangible concepts and provide a coherent image of basic phenomena. This approach is essential when it comes to hard to manage, time-dependent processes such as Magic Angle Spinning (MAS), where the anisotropic character of the spin system interactions couple with experimentally introduced time evolution processes. The presented work concerns fundamental aspects of solid state NMR namely: the uniqueness of the tetrahedral angle and evolution of both dipolar D and chemical shield σ coupling tensors under MAS conditions.

Research Article

Quantitative Susceptibility Mapping of Magnetic Quadrupole Moments

We modeled the magnetic field up to the quadrupole term to investigate not only the average susceptibility (dipole), but also the susceptibility distribution (quadrupole) contribution. Expanding the magnetic field up to the order provides the quadrupole (: monopole, : dipole). Numerical simulations were performed to investigate the quadrupole contribution with subvoxel nonuniformity. Conventional dipole and our dipole + quadrupole models were compared in the simulation, the phantom and human brain. Furthermore, the quadrupole field was compared with the anisotropic susceptibility field in the dipole tensor model. In a nonuniformity case, numerical simulations showed a nonnegligible quadrupole field contribution. Our study showed a difference between the two methods in the susceptibility map at the edges; both the phantom and human studies showed sharper structural edges with the dipole + quadrupole model. Quadrupole moments showed contrast mainly at the structural boundaries. The quadrupole moment field contribution was smaller but nonnegligible compared to the anisotropic susceptibility contribution. Nonuniform and uniform source distributions can be separately considered by quadrupole expansion, which were mixed together in the dipole model. In the presence of nonuniformity, the susceptibility maps may be different between the two models. For a comprehensive field model, the quadrupole might need to be considered along with susceptibility anisotropy and microstructure effects.

Research Article

Evaluation of the Impact of Magnetic Resonance Imaging (MRI) on Gross Tumor Volume (GTV) Definition for Radiation Treatment Planning (RTP) of Inoperable High Grade Gliomas (HGGs)

Aim and Background. Inoperable high-grade gliomas (HGGs) comprise a specific group of brain tumors portending a very poor prognosis. In the absence of surgical management, radiation therapy (RT) offers the primary local treatment modality for inoperable HGGs. Optimal target definition for radiation treatment planning (RTP) of HGGs is a difficult task given the diffusely infiltrative nature of the disease. In this context, detailed multimodality imaging information may add to the accuracy of target definition in HGGs. We evaluated the impact of Magnetic Resonance Imaging (MRI) on Gross Tumor Volume (GTV) definition for RTP of inoperable HGGs in this study. Materials and Methods. Twenty-five inoperable patients with a clinical diagnosis of HGG were included in the study. GTV definition was based on Computed Tomography- (CT-) simulation images only or both CT-simulation and MR images, and a comparative assessment was performed to investigate the incorporation of MRI into RTP of HGGs. Results. Median volume of GTV acquired by using CT-simulation images only and by use of CT and MR images was 65.3 (39.6-94.3) cc and 76.1 (46.8-108.9) cc, respectively. Incorporation of MRI into GTV definition has resulted in a median increase of 12.61% (6%-19%) in the volume of GTV defined by using the CT-simulation images only, which was statistically significant (p < 0.05). Conclusion. Incorporation of MRI into RTP of inoperable HGGs may improve GTV definition and may have implications for dose escalation/intensification strategies despite the need for further supporting evidence.

Concepts in Magnetic Resonance Part A, Bridging Education and Research
Publishing Collaboration
More info
Wiley Hindawi logo
 Journal metrics
Acceptance rate-
Submission to final decision-
Acceptance to publication-
CiteScore0.600
Impact Factor0.560
 Submit

We are committed to sharing findings related to COVID-19 as quickly as possible. We will be providing unlimited waivers of publication charges for accepted research articles as well as case reports and case series related to COVID-19. Review articles are excluded from this waiver policy. Sign up here as a reviewer to help fast-track new submissions.