Complexity
Publishing Collaboration
More info
Wiley Hindawi logo
 Journal metrics
Acceptance rate43%
Submission to final decision64 days
Acceptance to publication35 days
CiteScore3.200
Impact Factor2.462

An Introduction to Complex Systems Science and Its Applications

Read the full article

 Journal profile

Complexity publishes original research and review articles across a broad range of disciplines with the purpose of reporting important advances in the scientific study of complex systems.

 Editor spotlight

Chief Editor, Prof Sayama, is currently researching complex dynamical networks, human and social dynamics, artificial life, and interactive systems while working at Binghamton University, State University of New York.

 Special Issues

We currently have a number of Special Issues open for submission. Special Issues highlight emerging areas of research within a field, or provide a venue for a deeper investigation into an existing research area.

Latest Articles

More articles
Research Article

A Method for Parameters Estimation in a Dynamical Model of Ebola Virus Transmission in Sierra Leone

Ebola is an infectious virus that causes Ebola hemorrhagic fever in primates and humans, which was first found in 1976. The Ebola virus outbreak in West Africa in 2014 was the largest ever. A lot of researchers use mathematical models to analyze the characteristics of infectious diseases. However, many parameters in the model cannot be estimated completely. To ease the difficulty, we proposed an approach to estimate the parameter based on genetic algorithm (GA). GA uses the natural selection method of the fittest to find the optimal solution of the model. The least residual squares sum is used as fitness function to measure the performance of GA in parameter estimation. Moreover, we used a dynamical model and the real data of Ebola in Sierra Leone to verify the validity of GA. The experimental results indicate that the GA has strong competitiveness compared with the classical method, and it is a feasible method for estimating the parameters of infectious disease models.

Research Article

Some Qualitative Properties of Traveling Wave Fronts of Nonlocal Diffusive Competition-Cooperation Systems of Three Species with Delays

This paper is concerned with nonlocal diffusion systems of three species with delays. By modified version of Ikehara’s theorem, we prove that the traveling wave fronts of such system decay exponentially at negative infinity, and one component of such solutions also decays exponentially at positive infinity. In order to obtain more information of the asymptotic behavior of such solutions at positive infinity, for the special kernels, we discuss the asymptotic behavior of such solutions of such system without delays, via the stable manifold theorem. In addition, by using the sliding method, the strict monotonicity and uniqueness of traveling wave fronts are also obtained.

Research Article

Reinspecting the Climate-Crop Yields Relationship at a Finer Scale and the Climate Damage Evaluation: Evidence from China

This paper reinvestigated the climate-crop yield relationship with the statistical model at crops’ growing stage scale. Compared to previous studies, our model introduced monthly climate variables in the production function of crops, which enables separating the yield changes induced by climate change and those caused by inputs variation and technique progress, as well as examining different climate effects during each growing stage of crops. By applying the fixed effect regression model with province-level panel data of crop yields, agricultural inputs, and the monthly climate variables of temperature and precipitation from 1985 to 2015, we found that the effects of temperature generally are negative and those of precipitation generally are positive, but they vary among different growth stages for each crop. Specifically, GDDs (i.e., growing degree days) have negative effects on spring maize’s yield except for the sowing and ripening stages; the effects of precipitation are negative in September for summer maize. Precipitation in December and the next April is significantly harmful to the yield of winter wheat; while, for the spring wheat, GDDs have positive effects during April and May, and precipitation has negative effects during the ripening period. In addition, we computed climate-induced losses based on the climate-crop yield relationship, which demonstrated a strong tendency for increasing yield losses for all crops, with large interannual fluctuations. Comparatively, the long-term climate effects on yields of spring maize, summer maize, and spring wheat are more noticeable than those of winter wheat.

ResearchArticle

Finite-Time Stability of Atangana–Baleanu Fractional-Order Linear Systems

This paper investigates a fractional-order linear system in the frame of Atangana–Baleanu fractional derivative. First, we prove that some properties for the Caputo fractional derivative also hold in the sense of AB fractional derivative. Subsequently, several sufficient criteria to guarantee the finite-time stability and the finite-time boundedness for the system are derived. Finally, an example is presented to illustrate the validity of our main results.

Research Article

Effect Improved for High-Dimensional and Unbalanced Data Anomaly Detection Model Based on KNN-SMOTE-LSTM

High-dimensional and unbalanced data anomaly detection is common. Effective anomaly detection is essential for problem or disaster early warning and maintaining system reliability. A significant research issue related to the data analysis of the sensor is the detection of anomalies. The anomaly detection is essentially an unbalanced sequence binary classification. The data of this type contains characteristics of large scale, high complex computation, unbalanced data distribution, and sequence relationship among data. This paper uses long short-term memory networks (LSTMs) combined with historical sequence data; also, it integrates the synthetic minority oversampling technique (SMOTE) algorithm and K-nearest neighbors (kNN), and it designs and constructs an anomaly detection network model based on kNN-SMOTE-LSTM in accordance with the data characteristic of being unbalanced. This model can continuously filter out and securely generate samples to improve the performance of the model through kNN discriminant classifier and avoid the blindness and limitations of the SMOTE algorithm in generating new samples. The experiments demonstrated that the structured kNN-SMOTE-LSTM model can significantly improve the performance of the unbalanced sequence binary classification.

Research Article

Complexity of Deep Convolutional Neural Networks in Mobile Computing

Neural networks employ massive interconnection of simple computing units called neurons to compute the problems that are highly nonlinear and could not be hard coded into a program. These neural networks are computation-intensive, and training them requires a lot of training data. Each training example requires heavy computations. We look at different ways in which we can reduce the heavy computation requirement and possibly make them work on mobile devices. In this paper, we survey various techniques that can be matched and combined in order to improve the training time of neural networks. Additionally, we also review some extra recommendations to make the process work for mobile devices as well. We finally survey deep compression technique that tries to solve the problem by network pruning, quantization, and encoding the network weights. Deep compression reduces the time required for training the network by first pruning the irrelevant connections, i.e., the pruning stage, which is then followed by quantizing the network weights via choosing centroids for each layer. Finally, at the third stage, it employs Huffman encoding algorithm to deal with the storage issue of the remaining weights.

Complexity
Publishing Collaboration
More info
Wiley Hindawi logo
 Journal metrics
Acceptance rate43%
Submission to final decision64 days
Acceptance to publication35 days
CiteScore3.200
Impact Factor2.462
 Submit

We are committed to sharing findings related to COVID-19 as quickly as possible. We will be providing unlimited waivers of publication charges for accepted research articles as well as case reports and case series related to COVID-19. Review articles are excluded from this waiver policy. Sign up here as a reviewer to help fast-track new submissions.