Table of Contents Author Guidelines Submit a Manuscript
Complexity
Volume 2017, Article ID 8301630, 10 pages
https://doi.org/10.1155/2017/8301630
Research Article

Nonlinear Complex Dynamics of Carbon Emission Reduction Cournot Game with Bounded Rationality

Computational Experiment Center for Social Science, School of Management, Jiangsu University, Zhenjiang, Jiangsu 212013, China

Correspondence should be addressed to LiuWei Zhao; moc.qq@276109631

Received 8 July 2017; Revised 14 August 2017; Accepted 10 September 2017; Published 12 October 2017

Academic Editor: Viet-Thanh Pham

Copyright © 2017 LiuWei Zhao. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Based on the hypothesis of participant’s bounded rationality, our study formulated a novel Cournot duopoly game model of carbon emission reduction and, subsequently, analyzed the dynamic adjustment mechanism of emission reduction for enterprises. The existence and stability of the equilibrium solution of game are further discussed by the nonlinear dynamics theory. Our findings revealed that the parameters have key significance on the dynamic properties of the system. However, when the adjustment speed gets too large, the system loses the original stability and vividly demonstrates complex chaos phenomenon. Higher market prices in carbon trading have an outstanding impact on the stability of the system, which easily leads to system instability. Our study further controlled the chaos behavior of the power system by the delay feedback control. The results of the numerical analysis depict that the unstable behavior of the dynamic system can be controlled efficiently and quickly, in the quest to restore back a stable and orderly market. Our novel method is proved to have provided decision makers with effective solution to market instability.