/ / / Tab 6

Research Article

# Kriging Metamodeling in Rotordynamics: Application for Predicting Critical Speeds and Vibrations of a Flexible Rotor

## Table 6

% of the relative errors on the variance of the critical speeds for different regression orders and correlation functions. Nonsymmetric case with 600 samples.
 Gaussian Linear Exponential Cubic Zero-order regression (151.85; 1.18) (76.12; 1.66) (58.14; 0.92) (166.04; 2.84) (48.74; 0.78) (21.74; 0.67) (12.19; 0.39) (77.41; 0.72) (10.58; 0.19) (11.05; 0.33) (11.89; 0.22) (7.44; 0.17) (12.40; 0.23) (7.52; 0.41) (8.02; 0.27) (6.32; 0.21) (0.00; 0.00) (0.67; 0.02) (0.29; 0.01) (1.29; 0.04) (0.00; 0.00) (2.29; 0.07) (0.78; 0.02) (5.00; 0.14) (0.00; 0.00) (1.01; 0.03) (0.69; 0.01) (2.27; 0.05) (0.00; 0.00) (0.49; 0.01) (0.16; 0.00) (1.11; 0.03) First-order regression (72.82; 0.72) (46.36; 0.86) (46.19; 0.55) (61.98; 1.10) (39.81; 5.32) (13.20; 0.52) (18.12; 0.41) (12.17; 0.30) (8.74; 0.20) (11.41; 0.33) (12.06; 0.23) (7.91; 0.17) (10.79; 0.18) (9.42; 0.40) (9.06; 0.26) (9.33; 0.17) (0.00; 0.00) (0.72; 0.01) (0.60; 0.01) (1.23; 0.02) (0.00; 0.00) (0.78; 0.01) (0.68; 0.01) (1.31; 0.01) (0.00; 0.00) (0.34; 0.01) (0.25; 0.00) (0.60; 0.01) (0.00; 0.00) (0.02; 0.00) (0.01; 0.00) (0.03; 0.00) Second-order regression (15.47; 0.29) (35.98; 0.50) (39.75; 0.38) (27.97; 0.33) (148.91; 4.25) (12.84; 0.42) (16.13; 0.37) (16.10; 0.25) (6.95; 0.15) (11.16; 0.32) (11.05; 0.21) (8.06; 0.13) (7.37; 0.15) (7.06; 0.31) (7.70; 0.23) (6.55; 0.13) (0.00; 0.00) (0.19; 0.01) (0.16; 0.00) (0.33; 0.01) (0.00; 0.00) (0.08; 0.00) (0.06; 0.00) (0.13; 0.00) (0.00; 0.00) (0.03; 0.00) (0.03; 0.00) (0.05; 0.00) (0.00; 0.00) (0.00; 0.00) (0.00; 0.00) (0.01; 0.00)