Applications in Science and Engineering for Modelling, Analysis and Control of Chaos
View this Special IssueResearch Article  Open Access
Chunsheng Feng, Cunyun Nie, Haiyuan Yu, Liping Zhou, "A Difference Scheme and Its Error Analysis for a Poisson Equation with Nonlocal Boundary Conditions", Complexity, vol. 2020, Article ID 6329404, 7 pages, 2020. https://doi.org/10.1155/2020/6329404
A Difference Scheme and Its Error Analysis for a Poisson Equation with Nonlocal Boundary Conditions
Abstract
The elliptic problem with a nonlocal boundary condition is widely applied in the field of science and engineering, such as the chaotic system. Firstly, we construct one highaccuracy difference scheme for a kind of elliptic problem by tactfully introducing an equivalent relation for one nonlocal condition. Then, we obtain the local truncation error equation by the Taylor formula and, initially, prove that the new scheme can reach the asymptotic optimal error estimate in the maximum norm through ingeniously transforming a twodimensional problem to a onedimensional one through bringing in the discrete Fourier transformation. Numerical experiments demonstrate the correctness of theoretical results.
1. Introduction
Nonlocal boundary value problems have certainly been one of the fastest growing areas in various application fields, such as chaos, chemistry, biology, and physics [1–7]. Some researchers are interested in numerical methods mainly including finite difference methods, finite element methods, finite volume methods, and other methods [8–16]. Many people have paid close attention to the finite difference method for stationary problems, for instance, the Poisson equation [17–22]. Recently, Zhai et al. put forward some compact fourorder and sixorder difference schemes for a 2D Poisson equation but lack theoretical analysis [17]. Some people have studied nonlinear elliptic problems with a nonlocal boundary condition. In 2016, Themistoclakis and Vecchio studied a nonlinear boundary value problem involving a nonlocal operator and proposed a classical numerical algorithm to solve the algebraic system by means of some iterative procedures [18]. Cannon developed a numerical method for a homogeneous, nonlinear, nonlocal, elliptic boundary value problem and proved the existence and uniqueness by a continuous compact mapping and the Brouwer fixed point theorem [19]. Pao and Wang concerned with some numerical methods for a fourthorder semilinear elliptic boundary value problem with nonlocal boundary condition. The fourthorder equation was formulated as a coupled system of two secondorder equations which were discretized by the finite difference method [20]. Based on fast discrete Sine transform, Wang et al. designed a fast solver to implement a fourthorder compact finite difference scheme for 1D, 2D, and 3D Poisson equations [21]. Islam et al. developed a collocation method based on the Haar wavelet and a meshless method by analyzing for the solution of a twodimensional Poisson equation with two different types of nonlocal boundary conditions [22].
Other researchers are interested in parabolic problems [23–27]. Ivanauskas et al. discussed the spectrum of a finite difference operator subject to nonlocal Robintype boundary conditions and analyzed the spectral properties of finite difference schemes for parabolic equations and also discussed alternating direction methods and constructed some weighted splitting finite difference scheme [23–25]. In 2011, Ismailov et al. investigated the inverse problem of finding a timedependent heat source in a parabolic equation with a nonlocal boundary and integral over determination conditions and showed the existence, uniqueness, and continuous dependence upon the data of the solution by using the generalized Fourier method [26, 27]. However, with the scope of the authors’ knowledge, there are few literatures that both presented some highaccuracy schemes and showed a theoretical proof for a 2D elliptic problem with two nonlocal conditions and, furthermore, displayed the corresponding numerical tests. It urges us to go deeply into this problem.
In the present paper, the first novel idea is that we ingeniously construct one highaccuracy difference scheme for a kind of elliptic problem with two nonlocal boundary conditions by introducing an equivalent relations for one nonlocal condition when the solution . The local truncation error equation is obtained by the Taylor formula. The second one is that we initially prove that it is convergent with an asymptotic optimal convergent order of two through tactful transforming a twodimensional problem to a onedimensional one by bringing in the discrete Fourier transformation. Numerical tests confirm the correctness of theoretical results.
The remainder of this paper is organized as follows. In section 2, we display the model problem and its discrete scheme. In section 3, we present error estimate by the discrete Fourier transformation. In section 4, we display numerical experiments to support our conclusions. Finally, we draw some conclusions from this paper.
2. The Model Problem and the Difference Scheme
We consider the following secondorder elliptic problem with local and nonlocal boundary conditions:where are some given smooth functions and is a constant.
To be convenient to discretize the nonlocal boundary, we present an equivalent relation as follows.
Lemma 1. Assume that the solution in Problem (1) and that functions satisfy consistent properties as follows:and then, the boundary condition is equivalent to the following nonlocal boundary condition:
Proof. Integrating two sides of equation (1) about the variable over the interval and noticing that condition , we haveThat is,On the other hand, when Condition (3) holds, together with equation (1), we can obtainIntegrating twice for two sides of the abovementioned expression about the variable , we havewhere and are two constants.
From the boundary and consistent conditions , , , and , respectively,Hence,This completes the proof of this lemma.
In the following, we will present the finite difference scheme for Problem (1) by utilizing Lemma 1.
We take the following partition for Region along the directions of and axes, respectively.where , , and is the corresponding partition number.
Equation (1) and two local boundary conditions can be discretized as follows:where and are the exact and approximate solutions of Problem (1) at Point , respectively.
From Lemma 1, two nonlocal boundary conditions can be discretized as follows:where
3. Error Estimate
To be convenient, we introduce the denotation , which means that there exists some constant such that .
Assume that the solution in Problem (1), from (11) and (12), and combining with equation (1), we havewhere is the error of the finite difference solution at Point and are coefficients of the corresponding local truncation errors, respectively, and they satisfyand .
Firstly, we will introduce the following discrete Fourier transformation:
Similar transformations for , respectively, are as follows:
Due to the fact that is an orthogonal matrix, the following inverse transformation formulas hold:
From (15), we have
Taking the discrete Fourier transformation for equations (13) and (14), respectively, for the variable , we havewhere
Letwhere satisfies
From (21) and (24), one can see thatwhere
Let
Now, we can obtain the following estimates.
Lemma 2. Suppose that satisfies (24). Then, we have
Proof. Let. Then, from (22) and (24), we haveRecalling that , and , we get .
Moreover,Therefore, one can easily infer (28).
Let , . From (30), we haveFrom (24), we getThen, summing the abovementioned equation over from to , we obtainFurthermore, summing (34) over from to and noticing , we getFrom (32) and the abovementioned equation, one can obtainTherefore, using (32) again together with (34), 29) holds, which completes the proof.
Theorem 1. Assume that and are the exact and finite difference solutions for Problem (1); then, as , for , we have
Proof. We denotewhich satisfyFrom the former two expressions of (25), we can derive that there exists such thatIn fact, we take the value of as in (40), respectively, and substitute them into the third expression in (25). Then, we obtainwhereFrom (39) and observing that and , we haveOn the other hand, from (26), (19), (22), and Lemma 2, we haveSynthesizing the estimates on and : (43) and (44), together with (41), then we haveFurthermore, from (40),Due to the fact thatwe haveFrom Lemma 2 and (20),Together with the fact thatone can obtain (37). This completes the proof of the theorem.
4. Numerical Experiments
In this section, we carry on some numerical experiments for Problem (1).
Example 1. In Problem (1), we take , , , and the exact solution . One can easily see that .
In this experiment, we take the uniform partition for Region and the step size , utilize Scheme (11) and (12), and employ the PCG method to solve the corresponding discrete system. Numerical results are shown as Tables 1 and 2, where the norms are defined as , , respectively, andis the ratio of the errors between the approximate and exact solutions for step sizes and . In order to display the pointwise error, we show the corresponding errors for four typical points in Table 2. From the results, one can see that the convergent order is two, which validates the correctness of theoretical results.


Example 2. In Problem (1), we take, , , , , and the exact solution . One can easily obtain .
We take the same methods as in Example 1 and get numerical results shown as Tables 3 and 4. From the results, one can see that the convergent order is two, which also confirms the correctness of theoretical results.


5. Summary and Conclusions
In this paper, firstly, we construct one highaccuracy difference scheme for a kind of elliptic problem with two nonlocal boundary conditions by introducing an equivalent expression for one nonlocal condition. Secondly, we, initially, prove that it is convergent with a saturated order through ingeniously transforming a twodimensional problem to a onedimensional one by bringing in the discrete Fourier transformation. Finally, we carry out some numerical tests to verify the correctness of theoretical results.
Data Availability
All data generated or analyzed during this study are included in this article.
Conflicts of Interest
The authors declare that they have no conflicts of interest.
Acknowledgments
This work was partially supported by National Natural Science Foundation of China (Grant no. 11971414), Hunan Province Science and Technology Innovation Plan Project (Grant no. 2018XK2304), and Youth Project of Hunan Provincial Education Department (Grant nos. 18B518 and 18B082).
References
 J. Zhou and D. Yang, “LegendreGalerkin spectral methods for optimal control problems with integral constraint for state in one dimension,” Computational Optimization and Applications, vol. 61, no. 1, pp. 135–158, 2015. View at: Publisher Site  Google Scholar
 H. Niu, D. Yang, and J. Zhou, “Numerical analysis of an optimal control problem governed by the stationary Navierstokes equations with global velocityconstrained,” Communications in Computational Physics, vol. 24, no. 5, pp. 1477–1502, 2018. View at: Publisher Site  Google Scholar
 H. Chen, Y. Liu, C. Feng, A. Liu, and X. Huang, “Dynamics at infinity and existence of singularly degenerate heteroclinic cycles in MaxwellBloch system,” Journal of Computational and Nonlinear Dynamics, vol. 15, no. 10, Article ID 101007, p. 8, 2020. View at: Publisher Site  Google Scholar
 B. Chen, Y. Liu, Z. Wei, and C. Feng, “New insights into a chaotic system with only a Lyapunov stable equilibrium,” Mathematical Methods in the Applied Sciences, vol. 43, no. 15, pp. 9262–9279, 2020. View at: Publisher Site  Google Scholar
 C. Feng, Q. Huang, and Y. Liu, “Jacobi analysis for an unusual 3D autonomous system,” International Journal of Geometric Methods in Modern Physics, vol. 17, no. 4, Article ID 2050062, p. 20, 2020. View at: Publisher Site  Google Scholar
 C. Feng, L. Li, Y. Liu, and Z. Wei, “Global dynamics of the chaotic disk dynamo system driven by noise,” Complexity, vol. 2020, no. 33, Article ID 8375324, 9 pages, 2020. View at: Publisher Site  Google Scholar
 Y. Liu, Z. Liu, and D. Motreanu, “Existence and approximated results of solutions for a class of nonlocal elliptic variationalhemivariational inequalitie,” Mathematical Methods in the Applied Sciences, pp. 1–14, 2020. View at: Publisher Site  Google Scholar
 R. S. Hirsh, “Higher order accurate difference solutions of fluid mechanics problems by a compact differencing technique,” Journal of Computational Physics, vol. 19, no. 1, pp. 90–109, 1975. View at: Publisher Site  Google Scholar
 C. V. Pao, “Numerical solutions of reactiondiffusion equations with nonlocal boundary conditions,” Journal of Computational and Applied Mathematics, vol. 136, no. 12, pp. 227–243, 2001. View at: Publisher Site  Google Scholar
 R. Ma, “A survey on nonlocal boundary value problems,” Applied Mathematics ENotes, vol. 7, pp. 257–279, 2007. View at: Google Scholar
 G. K. Berikelashvili and N. Khomeriki, “On a numerical solution of one nonlocal boundaryvalue problem with mixed DirichletNeumann conditions,” Lithuanian Mathematical Journal, vol. 53, no. 4, pp. 367–380, 2013. View at: Publisher Site  Google Scholar
 C. Nie and H. Yu, “Some error estimates on the finite element approximation for twodimensional elliptic problem with nonlocal boundary,” Applied Numerical Mathematics, vol. 68, pp. 31–38, 2013. View at: Publisher Site  Google Scholar
 Y. Zhang, “Optimal error estimates of compact finite difference discretizations for the schrödingerPoisson system,” Communications in Computational Physics, vol. 13, no. 5, pp. 1357–1388, 2013. View at: Publisher Site  Google Scholar
 C. Nie, S. Shu, H. Yu, and Q. An, “A high order composite scheme for the second order elliptic problem with nonlocal boundary and its fast algorithm,” Applied Mathematics and Computation, vol. 227, pp. 212–221, 2014. View at: Publisher Site  Google Scholar
 T. Wang, “Optimal pointwise error estimate of a compact difference scheme for the coupled GrossPitaevskii equations in one dimension,” Journal of Scientific Computing, vol. 59, no. 1, pp. 158–186, 2014. View at: Publisher Site  Google Scholar
 J. Zhou, Z. Jiang, H. Xie, and H. Niu, “The error estimates of spectral methods for 1dimension singularly perturbed problem,” Applied Mathematics Letters, vol. 100, Article ID 106001, 2020. View at: Publisher Site  Google Scholar
 S. Zhai, X. Feng, and Y. He, “A new method to deduce highorder compact difference schemes for twodimensional Poisson equation,” Applied Mathematics and Computation, vol. 230, pp. 9–26, 2014. View at: Publisher Site  Google Scholar
 W. Themistoclakis and A. Vecchio, “On the numerical solution of a nonlocal boundary value problem,” Journal of Computational and Applied Mathematics, vol. 292, pp. 720–731, 2016. View at: Publisher Site  Google Scholar
 J. R. Cannon and D. J. Galiffa, “On a numerical method for a homogeneous, nonlinear, nonlocal, elliptic boundary value problem,” Nonlinear Analysis: Theory, Methods & Applications, vol. 74, no. 5, pp. 1702–1713, 2011. View at: Publisher Site  Google Scholar
 C. V. Pao and Y.M. Wang, “Numerical methods for fourthorder elliptic equations with nonlocal boundary conditions,” Journal of Computational and Applied Mathematics, vol. 292, pp. 447–468, 2016. View at: Publisher Site  Google Scholar
 H. Wang, Y. Zhang, X. Ma, J. Qiu, and Y. Liang, “An efficient implementation of fourthorder compact finite difference scheme for Poisson equation with Dirichlet boundary conditions,” Computers & Mathematics with Applications, vol. 71, no. 9, pp. 1843–1860, 2016. View at: Publisher Site  Google Scholar
 S.U. Islam, A. Imran, and M. Ahmad, “Numerical solution of twodimensional elliptic PDEs with nonlocal boundary conditions,” Computers and Mathematics with Applications, vol. 69, no. 3, pp. 180–205, 2015. View at: Publisher Site  Google Scholar
 F. Ivanauskas, T. Meškauskas, and M. Sapagovas, “Stability of difference schemes for twodimensional parabolic equations with nonlocal boundary conditions,” Applied Mathematics and Computation, vol. 215, no. 7, pp. 2716–2732, 2009. View at: Publisher Site  Google Scholar
 M. Sapagovas, T. Meškauskas, and F. Ivanauskas, “Numerical spectral analysis of a difference operator with nonlocal boundary conditions,” Applied Mathematics and Computation, vol. 218, no. 14, pp. 7515–7527, 2012. View at: Publisher Site  Google Scholar
 S. Sajaviˇcius, “Stability of the weighted splitting finitedifference scheme for a twodimensional parabolic equation with two nonlocal integral conditions,” Computers and Mathematics with Applications, vol. 64, no. 11, pp. 3485–3499, 2012. View at: Publisher Site  Google Scholar
 M. I. Ismailov, F. Kanca, and D. Lesnic, “Determination of a timedependent heat source under nonlocal boundary and integral overdetermination conditions,” Applied Mathematics and Computation, vol. 218, no. 8, pp. 4138–4146, 2011. View at: Publisher Site  Google Scholar
 A. Hazanee and D. Lesnic, “Determination of a timedependent coefficient in the bioheat equation,” International Journal of Mechanical Sciences, vol. 88, pp. 259–266, 2014. View at: Publisher Site  Google Scholar
Copyright
Copyright © 2020 Chunsheng Feng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.