Research Article  Open Access
Wen Huang, Tianhua Jiang, Xiucheng Zhang, Naveed Ahmad Khan, Muhammad Sulaiman, "Analysis of BeamColumn Designs by Varying Axial Load with Internal Forces and Bending Rigidity Using a New Soft Computing Technique", Complexity, vol. 2021, Article ID 6639032, 19 pages, 2021. https://doi.org/10.1155/2021/6639032
Analysis of BeamColumn Designs by Varying Axial Load with Internal Forces and Bending Rigidity Using a New Soft Computing Technique
Abstract
Design problems in structural engineering are often modeled as differential equations. These problems are posed as initial or boundary value problems with several possible variations in structural designs. In this paper, we have derived a mathematical model that represents different structures of beamcolumns by varying axial load with or without internal forces including bending rigidity. We have also developed a novel solver, the LeNNNM algorithm, which consists of weighted Legendre polynomials, and a single path following optimizer, the Nelder–Mead (NM) algorithm. To evaluate the performance of our solver, we have considered three design problems representing beamcolumns. The values of performance indicators, MAD, TIC, NSE, and ENSE, are calculated for a hundred simulations. The outcome of our statistical analysis points to the superiority of the LeNNNM algorithm. Graphical illustrations are presented to further elaborate on our claims.
1. Introduction
Most of the problems arising in numerical science and engineering such as physics, biology, economics, mathematics, and astronomy are modeled as differential equations with initial or boundary values. The modeling enables us to analyze and understand the concept of a particular event in a precise way. Thus, finding an exact and analytical solution for such models gained immense importance in recent years. Generally, finding exact solutions to the physical problems modeled as differential equations is a difficult task and, in most cases, the analytic solution does not exist. Therefore, it becomes necessary to study numerical methods for finding solutions to the differential equations representing physical phenomenon.
Among various proposed methods for solving ODE’s, to solve the twopoint Boundary value problem (BVP), a finite difference method [1] was proposed. For solving fourthorder and sixthorder BVP’s, the homotopy perturbation method [2, 3] is proposed. Multipoints’ BVP’s are solved by optimal homotopy ssymptotic proposed by Ali [4]. Also, for the solution of twopoints and multipoints’ BVP’s of higher order, a domain decomposition method [5–7] was developed. Jacobi polynomials were used by Doha [8] to propose a spectral Galerkin algorithm for twopoints’ BVP’s of third and fifth order. For the solution of even order DEs, Chebyshev polynomials are used by Doha [9] to develop spectral Galerkin algorithm. Shannon wavelet method [10], Haar wavelets method [11], Saadatmandi and Dehghan technique [12], a fifthfourth continuous block implicit hybrid method [13], and spectral Bernstein residual method [14] were proposed for the solution of higherorder differential equations. To solve higherorder linear and nonlinear differential equations with two boundary values, variational methods [15–17] were introduced. In recent years, many techniques have been developed to solve nonlinear stiff models, i.e., blood flow of Ree Eyring fluid [18] and numerical study of the DNA dynamics arising in oscillator chain of the Peyrard–Bishop model [19]. Besides the advantages that these methods give a good approximation to the solution, it is required to have an initial guess near a required solution and the approximate solution is differentiable and continuous in the domain, and hence, it seriously affects the stability of these numerical techniques.
Artificial neural networks are one of the intelligent techniques in solving different types of differential equations. The results obtained by the approximation through neural networks are close enough to the analytic or exact solution. In general, neural networks are widely used to solve fractional differential equations, integro differential equations (IDEs), partial differential equations (PDEs), and ordinary differential equations (ODEs). Feedforward artificial neural networks are used to solve twopoint boundary value problems (BVP’s) of fourth order. Higherorder ODE’s with boundary values are solved by the radial basis activation function in neural networks as presented by MaiDuy [20].
According to no free lunch theorem, researchers are compelled to hybridize the strengths of two or more techniques so that highquality solutions are calculated with fewer efforts. In recent times, metaheuristic techniques have gained the attention of researchers in various fields of science and engineering. Impacts of different crossover operators are investigated for handling multiobjective problems [21]. A plant propagation algorithm (PPA) and its modified version were developed to solve design engineering problems [22]. In electrical engineering, several methodologies are used to solve complex optimization problems [23]. Optimal design and temperature distribution of heat fin is solved by using hybridization of artificial neural networks and metaheuristic algorithms [24, 25] and, furthermore, oscillatory behavior of heart beat [26]. Most of the realapplication problems are highly nonlinear ODEs and provide less information about the continuity and differentiability of resulting solutions in solution space. The authors of this paper are addressing this issue and hence developed a novel solver that combines weighted Legendre polynomials and an efficient single path following optimizer the Nelder–Mead (NM) algorithm. The outcome of our experiments dictates that the LeNNNM algorithm can handle ODEs and provide quality solutions.
Salient features of this research are summarized as follows:(i)We have derived a mathematical model that represents different structures of beamcolumns. By varying axial load with or without internal forces including bending rigidity, we have studied different cases of the problem.(ii)We have also developed a novel solver, the LeNNNM algorithm, which consists of weighted Legendre polynomials and a single path following optimizer the Nelder–Mead (NM) algorithm.(iii)A graphical overview of the novel LeNNNM algorithm is presented in Figure 1.(iv)Three versions of the structural designs of beamcolumns are analyzed with the help of LeNNNM algorithm, see Problems 1–3.(v)To examine the quality of solutions calculated by LeNNNM algorithm, we have calculated values of performance indicators mean absolute deviation (MAD), Theil’s inequality coefficient (TIC), Nash Sutcliffe efficiency (NSE), and error in Nash Sutcliffe efficiency (ENSE).(vi)Series solutions are presented in equations (30), (31), and (32), which may be used by researchers for further investigation.(vii)Our solutions are in strong agreement with reference solutions and absolute errors are less than the reference errors, see Tables 1–3.(viii)Graphical illustrations for performance indicators are presented in Figure 2. Lower values of MAD, TIC, and ENSE show that our solutions are of good quality.(ix)We have repeated our simulations for hundred times and overall performance is depicted in terms of fitness values, MAD, TIC, and ENSE, for 100 runs, see Figure 3.(x)The success rate of the LeNNNM algorithm is shown by plotting the frequency graphs of fitness values, MAD, TIC, and ENSE, with normal distribution fittings. All these analyses dictate that the LeNNNM algorithm is stable, efficient, and compatible for solving design engineering problems.
(a)
(b)



(a)
(b)
(c)
(a)
(b)
(c)
2. Mathematical Model Representing the Design of BeamColumns
Most of the problems related to the physical phenomenon are modeled as differential equations. Higherorder differential equations appear in mathematical models of the elastic stability theory. Hence, most of the physical problems are posed with nonlinear and complex ODEs. To understand and analyze the design of beamcolumn, a differential relation should be developed between the various crosssections of the physical problem.
Crosssection analysis of a beamcolumn problem is shown in Figure 1. An element at a distance , as shown in the figure, is taken from the crosssection of beamcolumn and is subject to both spread load perpendicular to the axis and the axial load , see Figure 1. Internal forces may arise in the element, and mathematically, it can be written as
Equilibrium equation in ydirection can be written as an ordinary differential equation given in [29–31]:
The sum of forces acting on each surface of the crosssection element will be the same because of the equilibrium state. Mathematically, it can be written aswhere M is the bending moment that tries to bend the crosssection element and V is the shear force acting on the surface of the element.
If we assume that rotations are small and if we neglect the terms of second order in , then equation (3) becomes
Since the rotations are assumed to be small and , then equation (4) can be written aswhere bending rigidity is denoted by . Taking derivative on both sides of equation (5) with respect to , then we get differential equation of fourth order for the elastic curve and is given as
3. Approximate Solutions and Weighted Legendre Polynomials
Higherorder boundary value problems occur in several areas of applied mathematics, fluid mechanics, elasticity, and quantum mechanics, as well as other branches of science and engineering.
Consider a general form of fourthorder ODE aswhere , ,, and are constants, is the independent variable, is the dependent variable, and and are bounds on the independent variable.
Prior to the discussion of the approximate solution in equation (1) for the differential equation, the weighted Legendre polynomials are discussed first. denotes the Legendre polynomials. Here, denotes order of Legendre polynomials. These polynomials are orthogonal and thus form a set of orthogonal polynomials on the basis of . In Table 4, the first ten Legendre polynomials are given.

The recursive formula given below generates higherorder Legendre polynomials:
Approximate series solution for equation (7) is considered aswhere , , and are unknown parameters. Since, order continuous derivatives of equation (9) exist, so first, second, third, and fourth derivative of equation (9) is given bywhere , , and are realvalued unknown parameters. Plugging equations (10)–(13) in equation (7),where . Equation (7) is now converted into an equivalent algebraic system of equations. Equation (14) can be solved for unknown parameters , , and using an efficient solver such as the LeNNNM algorithm. All the symbols and abbreviations used in the paper are defined in Table 5.

4. Nelder–Mead Algorithm
Nelder–Mead (NM) algorithm is a singlepath following optimizer and is used in this paper to optimize the fitness function developed for each problem. To reduce a function, NM algorithm sets up the simplex by using points. Such points are defined as the vector directions on an dimensional search space. In recent times, NM algorithm is used to find numerical solution of the dynamical model of Liion batteries for electric vehicle [32], nonlinear Muskingum models [33], economic load dispatch problem with valve point loading effect [34], optimization of TIG welding parameters [35], optimization of noisy CNLS problems [36], and parameter identification of chaotic systems [37]. Implementation of NM algorithm is based on four basic operators [38]. Below, we present details of these operators:
4.1. Reflection
Reflection point is determined bywhere is called centroid and is defined as
Reflection coefficient is denoted by . “” is accepted, and iterations are terminated if .
4.2. Expansion
To calculate expansion point, equation (17) is used:
Equation (17) will be evaluated if value of function at is less then . Expansion coefficient is denoted by . If , then we accept “,” and the process of iteration is terminated. will be accepted if the above condition is not satisfied.
4.3. Contraction
If , then the process of contraction occurs.(1)Outside contraction is performed by equation (18) if : where “” is coefficient of contraction. We accept “” if . Otherwise, NM algorithm will move to the shrinking step.(2)Inside contraction is performed if . Otherwise, NM algorithm will move to the shrink step.
4.4. Shrink
The process of shrinking is modeled bywhere “” denotes shrink coefficient. The subsequent shrinkage of the simplex is expressed as for the succeeding iterations.
5. Our Proposed LeNNNM Algorithm
Steps for the proposed technique are summarized as follows: Step 1: initialize a random population of weights and define a fitness function. Approximate solution is constructed by using activation function given by equation (9). Step 2: solution along with higher derivatives are approximated at arbitrary generated search points. Step 3: put approximate solution along with higher derivatives in a given differential equation. Step 4: an equivalent set of system of algebraic equations corresponding to given differential equation will be generated by Step 3. Step 5: optimize the system unknown parameters , , and using LeNN. Step 6: Nelder–Mead algorithm will start the process of optimizing the system by taking , , and as its initial guess. Step 7: Nelder–Mead algorithm evaluates the fitness function, and the results will be displayed when the stopping criteria are achieved. Step 8: best values for the weights , , and obtained will be plugged in approximate solution equation (9). Step 9: it will be the solution.
Working strategy of proposed algorithm is also shown in Figure 4. Parameters’ setting for LeNN and NM algorithm is given in Table 6.

6. Performance Indicators
To study the performance of LeNNNM technique for solving Beam equations, the performance indications such as mean absolute deviation (MAD), Theil’s inequality coefficient (TIC), and error in Nash Sutcliffe efficiency (ENSE) are implemented. The formulation of these performance indices are given by [38]wherewhere represents the number the mesh points.
7. Numerical Applications
Problem 1. Consider the homogenous beam equation of the fourth order with bending rigidity [27], , , and :with boundary conditionsThe exact solution for the physical problem modeled as equation (22) is given byThe result obtain by LeNNNM algorithm along with absolute errors is given in Table 1 and graphically illustrated through Figures 5(a) and 6(a), respectively. The unknown parameters achieved by the proposed method are revealed in Table 7. The result of MAD, TIC, and ESNE for equation (22) is shown in Figures 2 and 3. Normal provability plots for fitness evaluation, MAD, TIC, and ENSE, are shown in Figures 7–10, respectively. Hence, the graphs and tables show the dominance of LeNNNM algorithm in solving higherorder ordinary differential equations subjecting to multiple initial or boundary conditions.
(a)
(b)
(c)
(a)
(b)
(c)

(a)
(b)
(c)
(a)
(b)
(c)
(a)
(b)
(c)
(a)
(b)
(c)
Problem 2. Consider the nonhomogenous linear beam equation of the fourth order with bending rigidity [28], , , and , forwith boundary conditionsThe exact solution for equation (25) is . The result obtained by LeNNNM algorithm is compared with the spline method [28] and given in Table 2. Figures 5(b) and 6(b) show that the solution obtained by proposed algorithm overlaps the exact solution with minimum absolute errors. Unknown neurons in LeNN structure for optimization of Problem 2 are shown in Figure 11. The result of MAD, TIC, and ESNE for equation (24) is shown in Figures 2 and 3. Normal provability plots for fitness evaluation, MAD, TIC, and ENSE, are shown in Figures 7–10, respectively. The statistical analysis shows the dominance of the proposed method.
(a)
(b)
(c)
Problem 3. Consider the homogenous linear beam equation of the fourth order with bending rigidity [28], , , and :with boundary conditionsThe exact solution for equation (27) is given byThe result obtained by LeNNNM algorithm along with absolute errors are given in Table 3 and graphically presented through Figures 5(c) and 6(c), respectively. The unknown parameters achieved by the proposed method are revealed in Table 7. Convergence of the fitness value during 100 independent runs of the proposed algorithm is shown in Figure 12. The result of MAD, TIC, and ESNE for equation (27) is shown in Figures 2 and 3. Normal provability plots for fitness evaluation and performance measures are shown through Figures 7–10, respectively.
Approximate series solution for Problem 1 is given asApproximate series solution for Problem 2 is given asApproximate series solution for Problem 3 is given as
(a)
(b)
(c)
8. Conclusion
In this paper, we have modeled physical problems arising in the beamcolumn theory as the fourth ordinary differential equation. Moreover, the paper presents a technique which is named as LeNNNM algorithm for solving an ordinary differential equation of higher order subjecting to single or multiinitial boundary conditions. The different cases of beam equations are studied and have been solved by the proposed technique. The results given in Tables 1–3 show that LeNNNM algorithm converges rapidly and dominates the existing algorithm in literature for finding solutions to higherorder differential equations such as beam equations. The analysis reveals that the proposed algorithm looks like a promising methodology to be exploited as an alternate, accurate, reliable, and robust computing framework for solving a variety of the problems arising in astrophysics, atomic physics, plasma physics, nonlinear optic, electric machines, nanotechnology, fuel ignition model, fluid dynamics, bioinformatics, and financial mathematics. The proposed method gives the direction of using the proposed algorithm for solving fractional differential equations.
Data Availability
The data used to support the findings of the study are available within the article.
Conflicts of Interest
The authors have no conflicts of interest to declare.
Authors’ Contributions
All authors have seen and agreed with the contents of the manuscript.
Acknowledgments
This work was sponsored in part by the Open Project Program of Fujian University Engineering Research Center of Disaster Prevention and Reduction of Southeast Coastal Engineering Structure (no. 2019004).
References
 M. M. Chawla and C. P. Katti, “Finite difference methods for twopoint boundary value problems involving high order differential equations,” Bit, vol. 19, no. 1, pp. 27–33, 1979. View at: Publisher Site  Google Scholar
 S. T. MohyudDin and M. A. Noor, “Homotopy perturbation method for solving fourthorder boundary value problems,” Mathematical Problems in Engineering, vol. 2007, Article ID 098602, 15 pages, 2007. View at: Publisher Site  Google Scholar
 M. A. Noor and S. T. MohyudDin, “Homotopy perturbation method for solving sixthorder boundary value problems,” Computers & Mathematics with Applications, vol. 55, no. 12, pp. 2953–2972, 2008. View at: Publisher Site  Google Scholar
 J. Ali, S. Islam, S. Islam, and G. Zaman, “The solution of multipoint boundary value problems by the optimal homotopy asymptotic method,” Computers & Mathematics with Applications, vol. 59, no. 6, pp. 2000–2006, 2010. View at: Publisher Site  Google Scholar
 M. Tatari and M. Dehghan, “The use of the Adomian decomposition method for solving multipoint boundary value problems,” Physica Scripta, vol. 73, no. 6, pp. 672–676, 2006. View at: Publisher Site  Google Scholar
 A.M. Wazwaz, “A new algorithm for calculating Adomian polynomials for nonlinear operators,” Applied Mathematics and Computation, vol. 111, no. 1, pp. 33–51, 2000. View at: Publisher Site  Google Scholar
 A.M. Wazwaz, “The numerical solution of sixthorder boundary value problems by the modified decomposition method,” Applied Mathematics and Computation, vol. 118, no. 23, pp. 311–325, 2001. View at: Publisher Site  Google Scholar
 E. H. Doha, A. H. Bhrawy, and R. M. Hafez, “A JacobiJacobi dualPetrovGalerkin method for third and fifthorder differential equations,” Mathematical and Computer Modelling, vol. 53, no. 910, pp. 1820–1832, 2011. View at: Publisher Site  Google Scholar
 E. H. Doha, W. M. AbdElhameed, and M. A. Bassuony, “New algorithms for solving high evenorder differential equations using third and fourth chebyshevgalerkin methods,” Journal of Computational Physics, vol. 236, pp. 563–579, 2013. View at: Publisher Site  Google Scholar
 Z. Shi and F. Li, “Numerical solution of highorder differential equations by using periodized Shannon wavelets,” Applied Mathematical Modelling, vol. 38, no. 78, pp. 2235–2248, 2014. View at: Publisher Site  Google Scholar
 I. Aziz, M. SirajUlIslam, and M. Nisar, “An efficient numerical algorithm based on Haar wavelet for solving a class of linear and nonlinear nonlocal boundaryvalue problems,” Calcolo, vol. 53, no. 4, pp. 621–633, 2016. View at: Publisher Site  Google Scholar
 A. Saadatmandi and M. Dehghan, “The use of Sinccollocation method for solving multipoint boundary value problems,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 2, pp. 593–601, 2012. View at: Publisher Site  Google Scholar
 A. L. Osa and O. E. Olaoluwa, “A fifthfourth continuous block implicit hybrid method for the solution of third order initial value problems in ordinary differential equations,” Applied and Computational Mathematics, vol. 8, pp. 50–57, 2019. View at: Publisher Site  Google Scholar
 M. Nwonye, “SpectralBernstein residual method for the solution of boundary value problem governing deflection of a beam via Matlab,” Journal of the Nigerian Mathematical Society, vol. 38, pp. 211–222, 2019. View at: Google Scholar
 M. A. Noor and S. T. MohyudDin, “Variational iteration technique for solving higher order boundary value problems,” Applied Mathematics and Computation, vol. 189, pp. 1929–1942, 2007. View at: Publisher Site  Google Scholar
 L. Xu, “The variational iteration method for fourth order boundary value problems,” Chaos, Solitons & Fractals, vol. 39, no. 3, pp. 1386–1394, 2009. View at: Publisher Site  Google Scholar
 M. A. Noor and S. T. MohyudDin, “Modified variational iteration method for solving fourthorder boundary value problems,” Journal of Applied Mathematics and Computing, vol. 29, no. 12, pp. 81–94, 2009. View at: Publisher Site  Google Scholar
 N. A. Shah and I. Khan, “Heat transfer analysis in a second grade fluid over and oscillating vertical plate using fractional Caputo–Fabrizio derivatives,” The European Physical Journal C, vol. 76, no. 7, p. 362, 2016. View at: Publisher Site  Google Scholar
 K. K. Ali, C. Cattani GómezAguilar, J. F. GómezAguilar, D. Baleanu, and M. S. Osman, “Analytical and numerical study of the DNA dynamics arising in oscillatorchain of PeyrardBishop model,” Chaos, Solitons & Fractals, vol. 139, Article ID 110089, 2020. View at: Publisher Site  Google Scholar
 N. MaiDuy, “Solving high order ordinary differential equations with radial basis function networks,” International Journal for Numerical Methods in Engineering, vol. 62, no. 6, pp. 824–852, 2005. View at: Publisher Site  Google Scholar
 W. K. Mashwani, A. Salhi, M. A. Jan, R. A. Khanum, and M. Sulaiman, “Impact analysis of crossovers in a multiobjective evolutionary algorithm,” Science International, vol. 27, no. 6, pp. 4943–4956, 2015. View at: Google Scholar
 M. Sulaiman and A. Salhi, “A seedbased plant propagation algorithm: the feeding station model,” The Scientific World Journal, vol. 2015, Article ID 904364, 16 pages, 2015. View at: Publisher Site  Google Scholar
 M. Sulaiman, S. Ahmad, J. Iqbal, A. Khan, and R. Khan, “Optimal operation of the hybrid electricity generation system using multiverse optimization algorithm,” Computational Intelligence and Neuroscience, vol. 2019, Article ID 6192980, 12 pages, 2019. View at: Publisher Site  Google Scholar
 A. Ahmad, M. Sulaiman, A. Alhindi, and A. J. Aljohani, “Analysis of temperature profiles in longitudinal fin designs by a novel neuroevolutionary approach,” IEEE Access, vol. 8, pp. 113285–113308, 2020. View at: Publisher Site  Google Scholar
 W. Waseem, M. Sulaiman, S. Islam et al., “A study of changes in temperature profile of porous fin model using cuckoo search algorithm,” Alexandria Engineering Journal, vol. 59, no. 1, pp. 11–24, 2020. View at: Publisher Site  Google Scholar
 A. Khan, M. Sulaiman, H. Alhakami, and A. Alhindi, “Analysis of oscillatory behavior of heart by using a novel neuroevolutionary approach,” IEEE Access, vol. 8, pp. 86674–86695, 2020. View at: Publisher Site  Google Scholar
 N. Ahamad and S. Sharan, “Study of numerical solution of fourth order ordinary differential equations by fifth order rungekutta method,” 2019. View at: Google Scholar
 O. A. Taiwo and O. M. Ogunlaran, “A nonpolynomial spline method for solving linear fourthorder boundaryvalue problems,” International Journal of Physical Sciences, vol. 6, pp. 3246–3254, 2011. View at: Google Scholar
 S. Timoshenko and J. M. Gere, Theory of Elastic Stability, Dover Publications, Mineola,NY, USA, 1961.
 S. P. Timoshenko and J. M. Gere, Theory of Elastic Stability, Courier Corporation, Chelmsford, MA, USA, 2009.
 W. Chen and T. Atsuta, Inplane behavior and design, Theory of BeamColumns, vol. 1, J. Ross Publishing, Fort Lauderdale, FL, USA, 1976.
 T. Mesbahi, F. Khenfri, N. Rizoug, K. Chaaban, P. Bartholomeüs, and P. Le Moigne, “Dynamical modeling of Liion batteries for electric vehicle applications based on hybrid particle swarmneldermead (PSONM) optimization algorithm,” Electric Power Systems Research, vol. 131, pp. 195–204, 2016. View at: Publisher Site  Google Scholar
 R. Barati, “Parameter estimation of nonlinear Muskingum models using NelderMead simplex algorithm,” Journal of Hydrologic Engineering, vol. 16, no. 11, pp. 946–954, 2011. View at: Publisher Site  Google Scholar
 K. M. Hasan and M. A. Zahoor Raja, “Design of reduced search space strategy based on integration of Nelder–Mead method and pattern search algorithm with application to economic load dispatch problem,” Neural Computing and Applications, vol. 30, no. 12, pp. 3693–3705, 2018. View at: Publisher Site  Google Scholar
 R. Kshirsagar, S. Jones, J. Lawrence, and J. Tabor, “Optimization of TIG welding parameters using a hybrid Nelder MeadEvolutionary algorithms method,” Journal of Manufacturing and Materials Processing, vol. 4, no. 1, p. 10, 2020. View at: Publisher Site  Google Scholar
 M. Žic and S. Pereverzyev, “Optimizing noisy CNLS problems by using NelderMead algorithm: a new method to compute simplex step efficiency,” Journal of Electroanalytical Chemistry, vol. 851, Article ID 113439, 2019. View at: Publisher Site  Google Scholar
 L. Wang, Y. Xu, and L. Li, “Parameter identification of chaotic systems by hybrid NelderMead simplex search and differential evolution algorithm,” Expert Systems with Applications, vol. 38, no. 4, pp. 3238–3245, 2011. View at: Publisher Site  Google Scholar
 N. A. Khan, M. Sulaiman, A. J. Aljohani, P. Kumam, and H. Alrabaiah, “Analysis of multiphase flow through porous media for imbibition phenomena by using the LeNNWOANM algorithm,” IEEE Access, vol. 8, pp. 196425–196458, 2020. View at: Publisher Site  Google Scholar
Copyright
Copyright © 2021 Wen Huang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.