Complexity

Collaborative Big Data Management and Analytics in Complex Systems with Edge


Publishing date
01 Jun 2020
Status
Closed
Submission deadline
24 Jan 2020

Lead Editor

1University of Auckland, Auckland, New Zealand

2University of the West of England, Bristol, UK

3Michigan State University, East Lansing, USA

4Nanjing University, Nanjing, China

This issue is now closed for submissions.
More articles will be published in the near future.

Collaborative Big Data Management and Analytics in Complex Systems with Edge

This issue is now closed for submissions.
More articles will be published in the near future.

Description

Complex systems are nonlinear systems composed of agents that can act with local environmental information. As the agents are usually of a high degree of complexity, such systems require a huge amount of data to extract appropriate insights for their decision-making. To support huge-volume data sensing, collection, storage, transmission, management, and analytics, cloud/edge computing and Internet of Things (IoT) have been leveraged as the supporting computation infrastructure, making the big data technology a recent disruptive revolution in the IT industry. The enormous commercial benefits, scientific advances, management efficiency, and analytical accuracy brought by big data have been recognized and further developed for a wide range of applications including complex systems.

Due to the complexity of a complex system, the engaged agents and the data they work on are often geographically distributed across a suite of computation resources. Traditionally, this is supported by cloud computing where an enormous server farm with thousands of computing servers are used to provision computation capability. Although the cloud service providers have placed multiple cloud centers across the whole world, the data transmission delay between the data sources and the cloud centers is still problematic for many complex systems where responses are usually required to be time critical or real-time. Instead, a recently emerging computation paradigm, edge computing, is promising to cater for these requirements, as edge computing resources are deployed data sources which support time critical or real-time data processing and analysis. Together with the cloud computing as the computation backend, edge computing has been adopted in complex systems. However, it is still a challenge to conduct big data management and analytics in complex systems which are supported by edge, given the complexity of complex systems and the unique features of edge computing.

Collaborative methodology has been gradually recognized as an effective way to handle the complexity in a complex system. For instance, computational intelligence based approaches enable agents in a complex system to learn a particular task of the system from big data to further facilitate complicated problem-solving, and these play an increasing important role in complex systems. Given that these approaches are usually not inherently designed for big volumes of data, it is quite interesting to investigate research problems such as how they handle big data for complex systems and design more scalable computational intelligence methods accordingly. Also, many emerging collaborative data analysis paradigms such as federated learning from distributed data have been put forth for real applications. Therefore, it is of both theoretical and practical importance to investigate collaborative innovation for big data management and analytics in complex systems with advanced computing infrastructure like edge, which highly demands great research efforts from researchers and practitioners.

The purpose of this special issue is to solicit both high-quality original research and review articles on the recent advances of collaborative big data management and analytics in complex systems with edge computing.

Potential topics include but are not limited to the following:

  • Complex system modeling in the cloud/edge/IoT environment
  • Knowledge based collaboration in complex systems with edge computing
  • Decision-making collaboration over big data for complex systems
  • Computational intelligence in big data-driven complex systems
  • Collaborative machine learning models for complex systems
  • Collaborative recommendation methods over big data for complex systems
  • Security, privacy, and trust issues in big data-driven complex systems

Articles

  • Special Issue
  • - Volume 2020
  • - Article ID 1285456
  • - Corrigendum

Corrigendum to “Study QoS Optimization and Energy Saving Techniques in Cloud, Fog, Edge, and IoT”

Zhiguo Qu | Yilin Wang | ... | Zheng Li
  • Special Issue
  • - Volume 2020
  • - Article ID 1496973
  • - Research Article

Collaborative Sleep Electroencephalogram Data Analysis Based on Improved Empirical Mode Decomposition and Clustering Algorithm

Xiangwei Zheng | Xiaochun Yin | ... | Xiaomei Yu
  • Special Issue
  • - Volume 2020
  • - Article ID 8923838
  • - Research Article

A New Multiple-Distribution GAN Model to Solve Complexity in End-to-End Chromosome Karyotyping

Yirui Wu | Xiao Tan | Tong Lu
  • Special Issue
  • - Volume 2020
  • - Article ID 1670483
  • - Research Article

Labelling Training Samples Using Crowdsourcing Annotation for Recommendation

Qingren Wang | Min Zhang | ... | Victor S. Sheng
  • Special Issue
  • - Volume 2020
  • - Article ID 5929584
  • - Research Article

Interactive Algorithms in Complex Image Processing Systems Based on Big Data

Yuanjin Xu | Xiaojun Liu
  • Special Issue
  • - Volume 2020
  • - Article ID 6147378
  • - Research Article

Microcluster-Based Incremental Ensemble Learning for Noisy, Nonstationary Data Streams

Sanmin Liu | Shan Xue | ... | Jia Wu
  • Special Issue
  • - Volume 2020
  • - Article ID 7016307
  • - Research Article

Distributed Task Offloading Game in Multiserver Mobile Edge Computing Networks

Shuang Chen | Ying Chen | ... | Yuemei Hu
  • Special Issue
  • - Volume 2020
  • - Article ID 8675128
  • - Research Article

Additive Eigenvalue Problems of the Laplace Operator with the Prescribed Contact Angle Boundary Condition

Hongmei Li | Peihe Wang
  • Special Issue
  • - Volume 2020
  • - Article ID 3805320
  • - Research Article

Moving Vehicle Detection and Tracking Based on Optical Flow Method and Immune Particle Filter under Complex Transportation Environments

Wei Sun | Min Sun | ... | Mian Li
  • Special Issue
  • - Volume 2020
  • - Article ID 4529429
  • - Research Article

An Entropy-Based Self-Adaptive Node Importance Evaluation Method for Complex Networks

Qibo Sun | Guoyu Yang | Ao Zhou
Complexity
Publishing Collaboration
More info
Wiley Hindawi logo
 Journal metrics
Acceptance rate43%
Submission to final decision64 days
Acceptance to publication35 days
CiteScore3.200
Impact Factor2.462
 Submit