Case Reports in Hematology

Case Reports in Hematology / 2013 / Article

Case Report | Open Access

Volume 2013 |Article ID 520712 | https://doi.org/10.1155/2013/520712

Del Corso Lisette, Balleari Enrico, Arboscello Eleonora, Ghio Riccardo, Mencoboni Manlio, Racchi Omar, "Mayor Erythropoietic Response after Deferasirox Treatment in a Transfusion-Dependent Anemic Patient with Primary Myelofibrosis", Case Reports in Hematology, vol. 2013, Article ID 520712, 4 pages, 2013. https://doi.org/10.1155/2013/520712

Mayor Erythropoietic Response after Deferasirox Treatment in a Transfusion-Dependent Anemic Patient with Primary Myelofibrosis

Academic Editor: S. Tauro
Received16 Jul 2013
Accepted31 Aug 2013
Published06 Nov 2013

Abstract

Primary myelofibrosis (PMF) is a myeloproliferative neoplasm frequently complicated by transfusion dependent anemia. Both anemia and transfusion-dependence are associated with a poor outcome, at least in part because of toxic effects of iron overload (IOL). Iron-chelating therapy (ICT) is increasingly used in order to prevent IOL in this setting. Here, we describe the case of a 73-year-old man affected by PMF and severe transfusion-dependent anemia who experienced a dramatic erythroid response after being treated with deferasirox to prevent IOL.

1. Introduction

Anemia is a frequent complication of primary myelofibrosis (PMF), either at presentation or during the course of the disease, with an incidence and diagnosis ranging from 50 to 70% [1]. The presence of anemia in PMF is well known to negatively impact survival, and transfusion dependence has been recently reported as a further negative prognostic factor; both of these variables are included in the more used current PMF prognostic scores [2, 3].

Although severe anemia could per se indicate a more aggressive disease with higher risk of leukemic transformation, the increased mortality in severely anemic PMF patients does not seem to be related entirely to leukemia but also to the negative effects of chronic low hemoglobin levels on cardiovascular system, and, in the heavily transfused patients, it might also be dependent on the systemic damage of the heart and other organs due to iron overload (IOL). IOL is also believed to increase the infective risk of these already frail patients.

To limit the toxicity of iron excess, iron-chelating therapy (ICT), although not routinely recommended by current guidelines of PMF management, has been recently increasingly proposed in the management of these patients, when transfusion-dependent anemia occurs. A positive effect from ICT on survival in patients with PMF has been already demonstrated by Leitch et al. [4], and it was mainly attributed to a reduction of toxic effects of IOL. A possible direct effect of ICT in improving erythropoiesis of patients with PMF has also been described, even if in a few cases [58].

Here, we describe a PMF patient with severe transfusion-dependent anemia in which ICT with deferasirox stunningly restored normal hemoglobin levels.

2. Case Presentation

A 73-year-old Caucasian otherwise healthy man came to our outpatient’s clinic in August 2011 because of neutrophil leukocytosis and splenomegaly. Blood counts were as follows: white blood cells (WBC) 28.2 × 109/L, hemoglobin (Hb) 11.5 g/dL, and platelets (Plt) 350 × 109/L. Physical examination was unremarkable with the exception of mild splenomegaly (lower margin 5 cm under costal margin). Folic acid and B12 vitamin serum concentrations were within normal ranges.

Examination of a peripheral blood smear revealed the presence of marked anysopoichilocytosis with several dacriocytes and orthochromatic erythroblasts, together with immature myeloid precursors (myelocytes and metamyelocytes) and 1% of myeloid blasts.

A bone marrow trephine biopsy showed a typical “myeloproliferative” pattern with myeloid hyperplasia and decreased erythropoiesis together with clusters of abnormal megakaryocytes; a grade I fibrosis (reticulin fibrosis according to 2008 World Health Organization (WHO) criteria [9]) was also observed. The assessments of Bcr/Abl rearrangement and JAK2 V617F mutation were both negative. According to 2008 WHO criteria [9], a diagnosis of PMF was therefore made, with an International Prognostic Score System (IPSS) [10] score of 2 (intermediate 2 risk) and a Dynamic International Prognostic Score System (DIPSS) [11] score again of 2 (intermediate 1 risk).

After few months of clinical observation, the patient progressively developed extreme leukocytosis (WBC 100 × 109/L), mild thrombocytopenia (Plt 120 × 109/L), and worsening of the normocytic anemia (Hb 10.0 g/dL). Splenomegaly progressively increased, with recurrent abdominal discomfort.

In December 2011, the DIPSS of the patient had increased to a score of 5 (high-risk), and a cytoreductive therapy with hydroxyurea and low-dose prednisone was consequently started, with an only partial response in WBC counts; because of worsening of anemia, treatment with erythropoietin-alpha (EPO) (40,000 U/week) was started in May 2012, with no improvement of anemia, which actually rapidly further worsened; in June 2012, Hb decreased to a nadir of 5.9 g/dL, and the patient became transfusion dependent; transfusion’s requirement rapidly increased to 4–6 packed red blood cells (PRBC) units per month. Splenomegaly and abdominal pain kept worsening, with the spleen reaching 30 cm in size, as measured by US scan in its longitudinal axis. The patient refused treatment with thalidomide, and in July 2012 splenectomy was performed. After splenectomy, the patient developed thrombocytosis (Plt 650 × 109/L), with a transient (few weeks) improvement of anemia, but thereafter he remained transfusion dependent with a mean monthly requirement of 5 PRBC units. Hepatomegaly was not observed. Treatment with hydroxyurea and EPO was maintained.

Because of the appearance of IOL, as indicated by a ferritin level of 1424 μg/L with transferrin saturation of 87%, after a total of 35 PRBC units transfused, in January 2013 the patient received ICT with deferasirox. Because of the presence of a mild impairment of renal function (creatinine clearance < 60 mL/m), a dose of 10 mg/Kg daily was used instead of the usual dose of 30 mg/Kg/day. After 4 weeks of treatment, we were surprised to observe a significant increase of Hb (9.1 g/dL) with no further transfusional need. After 8 weeks of deferasirox therapy, Hb raised up to 13.3 g/dL and EPO was stopped. A steady platelet’s decrease was also observed, which returned within normal ranges, while leukocytes counts remained elevated (mean WBC 70 × 109/L). After only two months of ICT, ferritin level decreased to 223 μg/L and deferasirox was stopped. Because of an increase of ferritin up to 800 μg/L, ICT was reintroduced at the dose of 5 mg/Kg daily in April 2013, and it is ongoing at the time of present writing. ICT has been well tolerated with only self-limiting G1 diarrhea, and the patient, after 6 months from the beginning of deferasirox, is in good clinical condition with stable Hb around 14.0 g/dL, thus experiencing a full anemia response according to the recently revised IWG-MRT and ELN response criteria for PMF [12].

Figure 1 shows the evolution of hematological parameters in relationship with the various treatments.

3. Discussion

PMF is a myeloproliferative neoplasm frequently complicated by transfusion-dependent anemia. With the exception of few cases eligible to bone marrow transplantation, no known treatment is able to alter the natural course of the disease. Given the detrimental effects of anemia and of IOL due to a prolonged transfusional support, any treatment able to improve anemia and transfusion-dependence could have a significant impact on patients’ quality of life and life expectancy. The impact of IOL on survival of PMF patients is actually controversial; two different studies of the same institution on this topic have indeed given different results [13, 14]. Nevertheless, an increasing amount of evidence seems to indicate that IOL has a detrimental effect on clinical course of PMF patients and that ICT might overcome it.

In fact, because many transfused PMF patients may experience a relatively long survival, increasing interest has focused on IOL prevention by adequate ICT. According to the more commonly used prognostic scores, a patient affected by PMF with a high-risk score, as was the case here described at the time of starting ICT, has indeed a median survival of 27 and 18 months, respectively, for IPSS and DIPSS. Furthermore, one retrospective study in PMF showed a positive effect of ICT on survival, postulating a decreased toxic effect from IOL with the consequent reduction of both cardiac and infectious mortality [4]. In the case here described, an unexpected hemoglobin increase was observed after the start of ICT. Although this erythroid response might be stochastic and unrelated to iron chelation or it could also be dependent on a delayed response to splenectomy [15], the strict relationship between deferasirox treatment and hemoglobin improvement observed in our patient is impressive and suggests a direct role of ICT in improving erythropoiesis of this patient. A bone marrow reassessment was not performed in our patient either at the progression or after improvement following the start of ICT, thus precluding any evaluation of possible clonal evolution of the disease, but the relative stability of WBC and Plt counts suggests that this was not the case.

Several emerging lines of evidence actually indicate that ICT can improve hematopoiesis and lead to a reduction or abolition of transfusion dependence in PMF, as we observed in our patient [48]. These data are very sparse and mainly derived from single case descriptions, but they are suggestive of a real biological phenomenon. A similar positive impact on transfusion dependence has been also described in patients with myelodysplastic syndromes (MDS) [1619] thus suggesting the absence of a specific correlation between hematopoietic improvement due to ICT and the type of disease.

Erythroid responses to ICT were varying defined as reduction in transfusion requirement or as an increase in hemoglobin levels but all concluded for a positive response that in a post hoc analysis of MDS patients from the EPIC study showed a significant improvement of erythropoiesis after ICT with deferasirox in 21.5% of cases [17].

Several possible mechanisms by which ICT can improve erythropoiesis have been proposed: a direct cytoreductive effect of ICT on the neoplastic clone was firstly suggested by Jensen [19], while reduction of oxidative species—which are believed to correlate with inefficient erythropoiesis [20, 21]—or inhibition of NF-κβ leading to a reduced transcription of antiapoptotic factors [22] has been more recently proposed.

The case here described showed an impressively strong positive impact of ICT in erythropoiesis of our patient, who experienced a complete and durable (six months at the time of present writing) resolving of a severe transfusion-dependent anemia. Further prospective and larger studies are necessary in order to confirm the exact role of ICT with deferasirox in the improvement of erythropoiesis of patients with PMF and to clarify the mechanism(s) underlining this phenomenon.

Conflict of Interests

The authors declare that they have no conflict of interests.

References

  1. G. Barosi, “Myelofibrosis with myeloid metaplasia: diagnostic definition and prognostic classification for clinical studies and treatment guidelines,” Journal of Clinical Oncology, vol. 17, no. 9, pp. 2954–2970, 1999. View at: Google Scholar
  2. B. Dupriez, P. Morel, J. L. Demory et al., “Prognostic factors in agnogenic myeloid metaplasia: a report on 195 cases with a new scoring system,” Blood, vol. 88, no. 3, pp. 1013–1018, 1996. View at: Google Scholar
  3. A. Tefferi, “Primary myelofibrosis: 2013 update on diagnosis, risk-stratification, and management,” American Journal of Hematology, no. 2, pp. 141–150, 2013. View at: Google Scholar
  4. H. A. Leitch, J. M. Chase, T. A. Goodman et al., “Improved survival in red blood cell transfusion dependent patients with primary myelofibrosis (PMF) receiving iron chelation therapy,” Hematological Oncology, vol. 28, no. 1, pp. 40–48, 2010. View at: Publisher Site | Google Scholar
  5. J. H. Marsh, M. Hundert, and P. Schulman, “Deferoxamine-induced restoration of haematopoiesis in myelofibrosis secondary to myelodysplasia,” British Journal of Haematology, vol. 76, no. 1, pp. 148–149, 1990. View at: Google Scholar
  6. M. E. Smeets, G. Vreugdenhil, and R. S. Holdrinet, “Improvement of erythropoiesis during treatment with deferiprone in a patient with myelofibrosis and trasfusional hemosiderosis,” American Journal of Hematology, vol. 51, no. 3, pp. 243–244, 1996. View at: Google Scholar
  7. E. Messa, D. Cilloni, F. Messa, F. Arruga, A. Roetto, and G. Saglio, “Deferasirox treatment improved the hemoglobin level and decreased transfusion requirements in four patients with the myelodysplastic syndrome and primary myelofibrosis,” Acta Haematologica, vol. 120, no. 2, pp. 70–74, 2008. View at: Publisher Site | Google Scholar
  8. A. A. Di Tucci, R. Murru, D. Alberti, B. Rabault, S. Deplano, and E. Angelucci, “Correction of anemia in a transfusion-dependent patient with primary myelofibrosis receiving iron chelation therapy with deferasirox (Exjade ICL670),” European Journal of Haematology, vol. 78, no. 6, pp. 540–542, 2007. View at: Publisher Site | Google Scholar
  9. A. Tefferi, J. Thiele, and J. W. Vardiman, “The 2008 world health organization classification system for myeloproliferative neoplasms: order out of chaos,” Cancer, vol. 115, no. 17, pp. 3842–3847, 2009. View at: Publisher Site | Google Scholar
  10. F. Cervantes, B. Dupriez, A. Pereira et al., “New prognostic scoring system for primary myelofibrosis based on a study of the International working group for myelofibrosis research and treatment,” Blood, vol. 113, no. 13, pp. 2895–2901, 2009. View at: Publisher Site | Google Scholar
  11. F. Passamonti, F. Cervantes, A. M. Vannucchi et al., “A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment),” Blood, vol. 115, no. 9, pp. 1703–1708, 2010. View at: Publisher Site | Google Scholar
  12. A. Tefferi, F. Cervantes, R. Mesa et al., “Revised response criteria for myelofibrosis: international Working Group-Myeloproliferative Neoplasms Research and Treatment (IWG-MRT) and European LeukemiaNet (ELN) consensus report,” Blood, vol. 122, pp. 1395–1398, 2013. View at: Google Scholar
  13. A. Tefferi, R. A. Mesa, A. Pardanani et al., “Red blood cell transfusion need at diagnosis adversely affects survival in primary myelofibrosis—increased serum ferritin or transfusion load does not,” American Journal of Hematology, vol. 84, no. 5, pp. 265–267, 2009. View at: Publisher Site | Google Scholar
  14. A. Pardanani, C. Finke, R. A. Abdelrahman, T. L. Lasho, and A. Tefferi, “Associations and prognostic interactions between circulating levels of hepcidin, ferritin and inflammatory cytokines in primary myelofibrosis,” American Journal of Hematology, vol. 88, pp. 312–316, 2013. View at: Google Scholar
  15. R. A. Mesa, M. A. Elliott, and A. Tefferi, “Splenectomy in chronic myeloid leukemia and myelofibrosis with myeloid metaplasia,” Blood Reviews, vol. 14, no. 3, pp. 121–129, 2000. View at: Publisher Site | Google Scholar
  16. C. Rose, S. Brechignac, D. Vassilief et al., “Does iron chelation therapy improve survival in regularly transfused lower risk MDS patients? A multicenter study by the GFM,” Leukemia Research, vol. 34, no. 7, pp. 864–870, 2010. View at: Publisher Site | Google Scholar
  17. H. Gattermann, C. Finelli, M. D. Porta et al., “Hematologic responses to deferasirox therapy in trasfusion-dependent patients with myelodysplatic syndromes,” Haematologica, vol. 97, no. 9, pp. 1364–1371, 2012. View at: Google Scholar
  18. R. Guariglia, M. C. Martorelli, O. Villani et al., “Positive effects on hematopoiesis in patients with myelodysplastic syndrome receiving deferasirox as oral iron chelation therapy: a brief review,” Leukemia Research, vol. 35, no. 5, pp. 566–570, 2011. View at: Publisher Site | Google Scholar
  19. P. D. Jensen, L. Heickendorff, B. Pedersen et al., “The effect of iron chelation on haemopoiesis in MDS patients with transfusional iron overload,” British Journal of Haematology, vol. 94, no. 2, pp. 288–299, 1996. View at: Google Scholar
  20. H. Ghoti, J. Amer, A. Winder, E. Rachmilewitz, and E. Fibach, “Oxidative stress in red blood cells, platelets and polymorphonuclear leukocytes from patients with myelodysplastic syndrome,” European Journal of Haematology, vol. 79, no. 6, pp. 463–467, 2007. View at: Publisher Site | Google Scholar
  21. L. Chan, R. Buckstein, M. Reis et al., “P092 Iron overload and haematopoiesis in MDS: does blood transfusion promote progression to AML?” Leukemia Research, vol. 33, no. 1, pp. S112–S113, 2009. View at: Publisher Site | Google Scholar
  22. E. Messa, S. Carturan, C. Maffè et al., “Deferasirox is a powerful NF-κb inhibitor in myelodysplastic cells and in leukemia cell lines acting independently from cell iron deprivation by chelation and reactive oxygen species scavenging,” Haematologica, vol. 95, no. 8, pp. 1308–1316, 2010. View at: Publisher Site | Google Scholar

Copyright © 2013 Del Corso Lisette et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

1313 Views | 538 Downloads | 2 Citations
 PDF Download Citation Citation
 Download other formatsMore
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly as possible. We will be providing unlimited waivers of publication charges for accepted research articles as well as case reports and case series related to COVID-19. Review articles are excluded from this waiver policy. Sign up here as a reviewer to help fast-track new submissions.