Table of Contents Author Guidelines Submit a Manuscript
Case Reports in Hematology
Volume 2015 (2015), Article ID 353247, 6 pages
http://dx.doi.org/10.1155/2015/353247
Case Report

RCSD1-ABL1 Translocation Associated with IKZF1 Gene Deletion in B-Cell Acute Lymphoblastic Leukemia

1Shifa International Hospital, Islamabad 44000, Pakistan
2University of Chicago, Chicago, IL 60637, USA
3Combined Military Hospital, Kharian 50090, Pakistan

Received 11 August 2015; Accepted 8 October 2015

Academic Editor: Takashi Sonoki

Copyright © 2015 Shawana Kamran et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Papadopoulos, S. A. Ridge, C. A. Boucher, C. Stocking, and L. M. Wiedemann, “The novel activation of ABL by fusion to an ets-related gene, TEL,” Cancer Research, vol. 55, no. 1, pp. 34–38, 1995. View at Google Scholar · View at Scopus
  2. E. De Braekeleer, N. Douet-Guilbert, M. J. Le Bris, C. Berthou, F. Morel, and M. De Braekeleer, “A new partner gene fused to ABL1 in a t(1;9)(q24;q34)-associated B-cell acute lymphoblastic leukemia,” Leukemia, vol. 21, no. 10, pp. 2220–2221, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. F. P. Duhoux, N. Auger, S. De Wilde et al., “The t(1;9)(p34;q34) fusing ABL1 with SFPQ, a pre-mRNA processing gene, is recurrent in acute lymphoblastic leukemias,” Leukemia Research, vol. 35, no. 7, pp. e114–e117, 2011. View at Publisher · View at Google Scholar
  4. K. De Keersmaecker, C. Graux, M. D. Odero et al., “Fusion of EML1 to ABL1 in T-cell acute lymphoblastic leukemia with cryptic t(9;14)(q34;q32),” Blood, vol. 105, no. 12, pp. 4849–4852, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Ernst, J. Score, M. Deininger et al., “Identification of FOXP1 and SNX2 as novel ABL1 fusion partners in acute lymphoblastic leukaemia,” British Journal of Haematology, vol. 153, no. 1, pp. 43–46, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Inokuchi, S. Wakita, T. Hirakawa et al., “RCSD1-ABL1-positive B lymphoblastic leukemia is sensitive to dexamethasone and tyrosine kinase inhibitors and rapidly evolves clonally by chromosomal translocations,” International Journal of Hematology, vol. 94, no. 3, pp. 255–260, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Mustjoki, S. Hernesniemi, A. Rauhala et al., “A novel dasatinib-sensitive RCSD1-ABL1 fusion transcript in chemotherapy-refractory adult pre-B lymphoblastic leukemia with t(1;9)(q24;q34),” Haematologica, vol. 94, no. 10, pp. 1469–1471, 2009. View at Publisher · View at Google Scholar
  8. C. Graux, J. Cools, C. Melotte et al., “Fusion of NUP214 to ABL1 on amplified episomes in T-cell acute lymphoblastic leukemia,” Nature Genetics, vol. 36, no. 10, pp. 1084–1089, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. E. De Braekeleer, N. Douet-Guilbert, P. Guardiola et al., “Acute lymphoblastic leukemia associated with RCSD1-ABL1 novel fusion gene has a distinct gene expression profile from BCR-ABL1 fusion,” Leukemia, vol. 27, no. 6, pp. 1422–1424, 2013. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Nieborowska-Skorska, M. A. Wasik, A. Slupianek et al., “Signal transducer and activator of transcription (STAT)5 activation by BCR/ABL is dependent on intact Src homology (SH)3 and SH2 domains of BCR/ABL and is required for leukemogenesis,” Journal of Experimental Medicine, vol. 189, no. 8, pp. 1229–1242, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. C. E. Eyers, H. McNeill, A. Knebel et al., “The phosphorylation of CapZ-interacting protein (CapZIP) by stress-activated protein kinases triggers its dissociation from CapZ,” Biochemical Journal, vol. 389, no. 1, pp. 127–135, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. R. C. Harvey, C. G. Mullighan, I.-M. Chen et al., “Rearrangement of CRLF2 is associated with mutation of JAK kinases, alteration of IKZF1, Hispanic/Latino ethnicity, and a poor outcome in pediatric B-progenitor acute lymphoblastic leukemia,” Blood, vol. 115, no. 26, pp. 5312–5321, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. C. G. Mullighan, X. Su, J. Zhang et al., “Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia,” The New England Journal of Medicine, vol. 360, no. 5, pp. 470–480, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. R. C. Harvey, C. G. Mullighan, X. Wang et al., “Identification of novel cluster groups in pediatric high-risk B-precursor acute lymphoblastic leukemia with gene expression profiling: correlation with genome-wide DNA copy number alterations, clinical characteristics, and outcome,” Blood, vol. 116, no. 23, pp. 4874–4884, 2010. View at Publisher · View at Google Scholar · View at Scopus