Table of Contents Author Guidelines Submit a Manuscript
Case Reports in Immunology
Volume 2014 (2014), Article ID 804761, 8 pages
http://dx.doi.org/10.1155/2014/804761
Case Report

Increased IL-17, a Pathogenic Link between Hepatosplenic Schistosomiasis and Amyotrophic Lateral Sclerosis: A Hypothesis

1Division of Infectious Diseases, Ospedale Generale, 39100 Bolzano, Italy
2Division of Neurology, Ospedale Generale, 39100 Bolzano, Italy
3Radiology, Ospedale Generale, 39100 Bolzano, Italy
4Division of Hematology, Ospedale Generale, 39100 Bolzano, Italy
5Department of Experimental Medicine, Sapienza University, 00161 Rome, Italy

Received 13 April 2014; Accepted 15 July 2014; Published 23 July 2014

Academic Editor: Takahisa Gono

Copyright © 2014 Oswald Moling et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. E. H. Pittella, “Neuroschistosomiasis,” Brain Pathology, vol. 7, no. 1, pp. 649–662, 1997. View at Publisher · View at Google Scholar · View at Scopus
  2. A. G. Ross, D. P. McManus, J. Farrar, R. J. Hunstman, D. J. Gray, and Y. Li, “Neuroschistosomiasis,” Journal of Neurology, vol. 259, no. 1, pp. 22–32, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. B. Gryseels, K. Polman, J. Clerinx, and L. Kestens, “Human schistosomiasis,” The Lancet, vol. 368, no. 9541, pp. 1106–1118, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. I. Bica, D. H. Hamer, and M. J. Stadecker, “Hepatic schistosomiasis,” Infectious Disease Clinics of North America, vol. 14, no. 3, pp. 583–604, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. B. M. Larkin, P. M. Smith, H. E. Ponichtera, M. G. Shainheit, L. I. Rutitzky, and M. J. Stadecker, “Induction and regulation of pathogenic Th17 cell responses in schistosomiasis,” Seminars in Immunopathology, vol. 34, no. 6, pp. 873–888, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. P. H. Gordon, “Amyotrophic lateral sclerosis: an update for 2013 clinical features, pathophysiology, management and therapeutic trials,” Aging and Disease, vol. 4, no. 5, pp. 295–310, 2013. View at Google Scholar
  7. J. Ravits, S. Appel, R. H. Baloh et al., “Deciphering amyotrophic lateral sclerosis: what phenotype, neuropathology and genetics are telling us about pathogenesis,” Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, vol. 14, supplement 1, pp. 5–18, 2013. View at Publisher · View at Google Scholar · View at Scopus
  8. M. R. Turner, O. Hardiman, M. Benatar et al., “Controversies and priorities in amyotrophic lateral sclerosis,” The Lancet Neurology, vol. 12, no. 3, pp. 310–322, 2013. View at Publisher · View at Google Scholar · View at Scopus
  9. S. D. Rao and J. H. Weiss, “Excitotoxic and oxidative cross-talk between motor neurons and glia in ALS pathogenesis,” Trends in Neurosciences, vol. 27, no. 1, pp. 17–23, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. R. Li, O. D. King, J. Shorter, and A. D. Gitler, “Stress granules as crucibles of ALS pathogenesis,” The Journal of Cell Biology, vol. 201, no. 3, pp. 361–372, 2013. View at Publisher · View at Google Scholar · View at Scopus
  11. S. M. Kim, H. Kim, J. S. Lee et al., “Intermittent hypoxia can aggravate motor neuronal loss and cognitive dysfunction in ALS mice,” PLoS ONE, vol. 8, no. 11, Article ID e81808, 2013. View at Google Scholar
  12. K. V. Luong and L. T. Nguyễn, “Roles of vitamin D in amyotrophic lateral sclerosis: possible genetic and cellular signaling mechanisms,” Molecular Brain, vol. 6, article 16, 2013. View at Publisher · View at Google Scholar
  13. F. Conti, C. Alessandri, M. Sorice et al., “Thin-layer chromatography immunostaining in detecting anti-phospholipid antibodies in seronegative anti-phospholipid syndrome,” Clinical and Experimental Immunology, vol. 167, no. 3, pp. 429–437, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Petri, A. M. Orbai, G. S. Alarcón et al., “Derivation and validation of the systemic lupus international collaborating clinics classification criteria for systemic lupus erythematosus,” Arthritis and Rheumatism, vol. 64, no. 8, pp. 2677–2686, 2012. View at Google Scholar
  15. T. C. A. Ferrari, P. R. R. Moreira, and A. S. Cunha, “Clinical characterization of neuroschistosomiasis due to Schistosoma mansoni and its treatment,” Acta Tropica, vol. 108, no. 2-3, pp. 89–97, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. W. Ridtitid, M. Wongnawa, W. Mahatthanatrakul, J. Punyo, and M. Sunbhanich, “Rifampin markedly decreases plasma concentrations of praziquantel in healthy volunteers,” Clinical Pharmacology and Therapeutics, vol. 72, no. 5, pp. 505–513, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. M. L. Vazquez, H. Jung, and J. Sotelo, “Plasma levels of praziquantel decrease when dexamethasone is given simultaneously,” Neurology, vol. 37, no. 9, pp. 1561–1562, 1987. View at Google Scholar · View at Scopus
  18. A. Manzella, K. Ohtomo, S. Monzawa, and J. H. Lim, “Schistosomiasis of the liver,” Abdominal Imaging, vol. 33, no. 2, pp. 144–150, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. J. R. Lambertucci, L. C. D. S. Silva, L. M. Andrade et al., “Imaging techniques in the evaluation of morbidity in schistosomiasis mansoni,” Acta Tropica, vol. 108, no. 2-3, pp. 209–217, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. A. S. D. A. Bezerra, G. D'Ippolito, R. P. Caldana et al., “Differentiating cirrhosis and chronic hepatosplenic schistosomiasis using MRI.,” The American journal of roentgenology, vol. 190, no. 3, pp. W201–207, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Piccin, H. Rizkalla, O. Smith et al., “Composition and significance of splenic γ-Gandy bodies in sickle cell anemia,” Human Pathology, vol. 43, no. 7, pp. 1028–1036, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Appenzeller, A. V. Faria, M. L. Li, L. T. L. Costallat, and F. Cendes, “Quantitative magnetic resonance imaging analyses and clinical significance of hyperintense white matter lesions in systemic lupus erythematosus patients,” Annals of Neurology, vol. 64, no. 6, pp. 635–643, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Manzella, P. Borba-Filho, C. T. Brandt, and K. Oliveira, “Brain magnetic resonance imaging findings in young patients with hepatosplenic schistosomiasis mansoni without overt symptoms,” The American Journal of Tropical Medicine and Hygiene, vol. 86, no. 6, pp. 982–987, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Debette and H. S. Markus, “The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis,” British Medical Journal, vol. 341, no. 7767, Article ID c3666, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. L. L. Horstman, W. Jy, C. J. Bidot et al., “Antiphospholipid antibodies: paradigm in transition,” Journal of Neuroinflammation, vol. 6, article 3, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. L. I. Rutitzky and M. J. Stadecker, “Exacerbated egg-induced immunopathology in murine Schistosoma mansoni infection is primarily mediated by IL-17 and restrained by IFN-γ,” European Journal of Immunology, vol. 41, no. 9, pp. 2677–2687, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. M. G. Shainheit, K. W. Lasocki, E. Finger et al., “The pathogenic Th17 cell response to major schistosome egg antigen is sequentially dependent on IL-23 and IL-1β,” Journal of Immunology, vol. 187, no. 10, pp. 5328–5335, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. L. I. Rutitzky, L. Bazzone, M. G. Shainheit, B. Joyce-Shaikh, D. J. Cua, and M. J. Stadecker, “IL-23 is required for the development of severe egg-induced immunopathology in schistosomiasis and for lesional expression of IL-17,” The Journal of Immunology, vol. 180, no. 4, pp. 2486–2495, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Mbow, B. M. Larkin, L. Meurs et al., “T-helper 17 cells are associated with pathology in human schistosomiasis,” Journal of Infectious Diseases, vol. 207, no. 1, pp. 186–195, 2013. View at Publisher · View at Google Scholar · View at Scopus
  30. G. Perona-Wright, R. J. Lundie, S. J. Jenkins, L. M. Webb, R. K. Grencis, and A. S. MacDonald, “Concurrent bacterial stimulation alters the function of helminth-activated dendritic cells, resulting in IL-17 induction,” Journal of Immunology, vol. 188, no. 5, pp. 2350–2358, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. L. E. Bazzone, P. M. Smith, L. I. Rutitzky et al., “Coinfection with the intestinal nematode Heligmosomoides polygyrus markedly reduces hepatic egg-induced immunopathology and proinflammatory cytokines in mouse models of severe schistosomiasis,” Infection and Immunity, vol. 76, no. 11, pp. 5164–5172, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. S. H. Appel, D. R. Beers, and J. S. Henkel, “T cell-microglial dialogue in Parkinson's disease and amyotrophic lateral sclerosis: are we listening?” Trends in Immunology, vol. 31, no. 1, pp. 7–17, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. T. Philips and W. Robberecht, “Neuroinflammation in amyotrophic lateral sclerosis: Role of glial activation in motor neuron disease,” The Lancet Neurology, vol. 10, no. 3, pp. 253–263, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. S. H. Appel, W. Zhao, D. R. Beers, and J. S. Henkel, “The microglial-motoneuron dialogue in ALS,” Acta Myologica, vol. 30, no. 1, pp. 4–8, 2011. View at Google Scholar · View at Scopus
  35. S. Zhu and Y. Qian, “IL-17/IL-17 receptor system in autoimmune disease: mechanisms and therapeutic potential,” Clinical Science, vol. 122, no. 11, pp. 487–511, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Rentzos, A. Rombos, C. Nikolaou et al., “Interleukin-17 and interleukin-23 are elevated in serum and cerebrospinal fluid of patients with ALS: a reflection of Th17 cells activation?” Acta Neurologica Scandinavica, vol. 122, no. 6, pp. 425–429, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Fiala, M. Chattopadhay, A. La Cava et al., “IL-17A is increased in the serum and in spinal cord CD8 and mast cells of ALS patients,” Journal of Neuroinflammation, vol. 7, article 76, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. G. Liu, M. Fiala, M. T. Mizwicki et al., “Neuronal phagocytosis by inflammatory macrophages in ALS spinal cord: inhibition of inflammation by resolvin D1,” American Journal of Neurodegenerative Disease, vol. 1, no. 1, pp. 60–74, 2010. View at Google Scholar
  39. J. Zimmermann, M. Krauthausen, M. J. Hofer, M. T. Heneka, I. L. Campbell, and M. Müller, “CNS-targeted production of IL-17A induces glial activation, microvascular pathology and enhances the neuroinflammatory response to systemic endotoxemia,” PLoS ONE, vol. 8, no. 2, Article ID e57307, 2013. View at Publisher · View at Google Scholar · View at Scopus
  40. P. Miossec, T. Korn, and V. K. Kuchroo, “Interleukin-17 and type 17 helper T cells,” The New England Journal of Medicine, vol. 361, no. 9, pp. 888–898, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. S. A. Khader, S. L. Gaffen, and J. K. Kolls, “Th17 cells at the crossroads of innate and adaptive immunity against infectious diseases at the mucosa,” Mucosal Immunology, vol. 2, no. 5, pp. 403–411, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. K. Hirota, H. Ahlfors, J. H. Duarte, and B. Stockinger, “Regulation and function of innate and adaptive interleukin-17-producing cells,” EMBO Reports, vol. 13, no. 2, pp. 113–120, 2012. View at Publisher · View at Google Scholar · View at Scopus
  43. S. K. Bedoya, B. Lam, K. Lau, and J. Larkin III, “Th17 cells in immunity and autoimmunity,” Clinical and Developmental Immunology, vol. 2013, Article ID 986789, 16 pages, 2013. View at Publisher · View at Google Scholar
  44. N. Y. Hemdan, A. M. Abu El-Saad, and U. Sack, “The role of T helper (TH )17 cells as a double-edged sword in the interplay of infection and autoimmunity with a focus on xenobiotic-induced immunomodulation,” Clinical and Developmental Immunology, vol. 2013, Article ID 374769, 13 pages, 2013. View at Publisher · View at Google Scholar
  45. A. Bandaru, K. P. Devalraju, P. Paidipally et al., “Phosphorylated STAT3 and PD-1 regulate IL-17 production and IL-23 receptor expression in Mycobacterium tuberculosis infection,” European Journal of Immunology, vol. 44, no. 7, pp. 2013–2024, 2014. View at Publisher · View at Google Scholar
  46. D. L. Kamen and V. Tangpricha, “Vitamin D and molecular actions on the immune system: modulation of innate and autoimmunity,” Journal of Molecular Medicine, vol. 88, no. 5, pp. 441–450, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. D. Bruce, S. Yu, J. H. Ooi, and M. T. Cantorna, “Converging pathways lead to overproduction of IL-17 in the absence of vitamin D signaling,” International Immunology, vol. 23, no. 8, pp. 519–528, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. J. H. Ooi, J. Chen, and M. T. Cantorna, “Vitamin D regulation of immune function in the gut: why do T cells have vitamin D receptors?” Molecular Aspects of Medicine, vol. 33, no. 1, pp. 77–82, 2012. View at Publisher · View at Google Scholar · View at Scopus
  49. O. Moling and P. Mian, “Induction of oral tolerance as treatment or prevention of chronic diseases associatet with Chlamydia pneumoniae infection: hypothesis,” Medical Science Monitor, vol. 9, no. 5, pp. HY15–HY18, 2003. View at Google Scholar · View at Scopus
  50. I. I. Ivanov, K. Atarashi, N. Manel et al., “Induction of intestinal Th17 cells by segmented filamentous bacteria,” Cell, vol. 139, no. 3, pp. 485–498, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. A. Sczesnak, N. Segata, X. Qin et al., “The genome of Th17 cell-inducing segmented filamentous bacteria reveals extensive auxotrophy and adaptations to the intestinal environment,” Cell Host and Microbe, vol. 10, no. 3, pp. 260–272, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. J. U. Scher, A. Sczesnak, R. S. Longman et al., “Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis,” eLife, vol. 2, Article ID e01202, 2013. View at Publisher · View at Google Scholar
  53. M. S. Shin, N. Lee, and I. Kang, “Effector T-cell subsets in systemic lupus erythematosus: update focusing on Th17 cells,” Current Opinion in Rheumatology, vol. 23, no. 5, pp. 444–448, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Vojdani, “A potential link between environmental triggers and autoimmunity,” Autoimmune Diseases, vol. 2014, Article ID 437231, 18 pages, 2014. View at Publisher · View at Google Scholar
  55. M. R. Turner, R. Goldacre, S. Ramagopalan, K. Talbot, and M. J. Goldacre, “Autoimmune disease preceding amyotrophic lateral sclerosis: an epidemiologic study,” Neurology, vol. 81, no. 14, pp. 1222–1225, 2013. View at Google Scholar