Table of Contents Author Guidelines Submit a Manuscript
Case Reports in Medicine
Volume 2013, Article ID 640216, 4 pages
http://dx.doi.org/10.1155/2013/640216
Case Report

Diagnosis of Cryptococcosis and Prevention of Cryptococcal Meningitis Using a Novel Point-of-Care Lateral Flow Assay

Department of Infectious Diseases, Helen Joseph Academic Hospital, 1 Perth Road, Westdene, Johannesburg 2092, South Africa

Received 26 August 2013; Accepted 8 October 2013

Academic Editor: Jacques F. Meis

Copyright © 2013 Ashar Dhana. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Antinori, “New insights into HIV/AIDS-associated cryptococcosis,” ISRN AIDS, vol. 2013, Article ID 471363, 22 pages, 2013. View at Publisher · View at Google Scholar
  2. K. Datta, K. H. Bartlett, R. Baer et al., “Spread of Cryptococcus gattii into Pacific Northwest Region of the United States,” Emerging Infectious Diseases, vol. 15, no. 8, pp. 1185–1191, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. Z. U. Khan, H. S. Randhawa, T. Kowshik, A. Chowdhary, and R. Chandy, “Antifungal susceptibility of Cryptococcus neoformans and Cryptococcus gattii isolates from decayed wood of trunk hollows of Ficus religiosa and Syzygium cumini trees in North-Western India,” Journal of Antimicrobial Chemotherapy, vol. 60, no. 2, pp. 312–316, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. B. J. Park, K. A. Wannemuehler, B. J. Marston, N. Govender, P. G. Pappas, and T. M. Chiller, “Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS,” AIDS, vol. 23, no. 4, pp. 525–530, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. J. N. Jarvis, G. Meintjes, A. Williams, Y. Brown, T. Crede, and T. S. Harrison, “Adult meningitis in a setting of high HIV and TB prevalence: Findings from 4961 suspected cases,” BMC Infectious Diseases, vol. 10, article 67, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. D. R. Boulware, D. B. Meya, T. L. Bergemann et al., “Clinical features and serum biomarkers in HIV immune reconstitution inflammatory syndrome after cryptococcal meningitis: a prospective cohort study,” PLoS Medicine, vol. 7, no. 12, Article ID e1000384, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. D. C. Tanner, M. P. Weinstein, B. Fedorciw, K. L. Joho, J. J. Thorpe, and L. B. Reller, “Comparison of commercial kits for detection of cryptococcal antigen,” Journal of Clinical Microbiology, vol. 32, no. 7, pp. 1680–1684, 1994. View at Google Scholar · View at Scopus
  8. R. Rajasingham, D. B. Meya, and D. R. Boulware, “Integrating cryptococcal antigen screening and pre-emptive treatment into routine HIV care,” Journal of Acquired Immune Deficiency Syndromes, vol. 59, no. 5, pp. e85–e91, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. J. N. Jarvis, A. Percival, S. Bauman et al., “Evaluation of a novel point-of-care cryptococcal antigen test on serum, plasma, and urine from patients with HIV-associated cryptococcal meningitis,” Clinical Infectious Diseases, vol. 53, no. 10, pp. 1019–1023, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. N. French, K. Gray, C. Watera et al., “Cryptococcal infection in a cohort of HIV-1-infected Ugandan adults,” AIDS, vol. 16, no. 7, pp. 1031–1038, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. J. N. Jarvis, S. D. Lawn, M. Vogt, N. Bangani, R. Wood, and T. S. Harrison, “Screening for cryptococcal antigenemia in patients accessing an antiretroviral treatment program in South Africa,” Clinical Infectious Diseases, vol. 48, no. 7, pp. 856–862, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. J. N. Jarvis, G. Meintjes, R. Wood, and T. S. Harrison, “Testing but not treating: missed opportunities and lost lives in the South African antiretroviral therapy programme,” AIDS, vol. 24, no. 8, pp. 1233–1235, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. R. W. Peeling and D. Mabey, “Point-of-care tests for diagnosing infections in the developing world,” Clinical Microbiology and Infection, vol. 16, no. 8, pp. 1062–1069, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. B. J. McMullan, C. Halliday, T. C. Sorrell et al., “Clinical utility of the cryptococcal antigen lateral flow assay in a diagnostic mycology laboratory,” PLoS ONE, vol. 7, no. 11, Article ID e49541, 2012. View at Publisher · View at Google Scholar
  15. M. D. Lindsley, N. Mekha, H. C. Baggett et al., “Evaluation of a newly developed lateral flow immunoassay for the diagnosis of cryptococcosis,” Clinical Infectious Diseases, vol. 53, no. 4, pp. 321–325, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Hansen, E. S. Slechta, M. A. Gates-Hollingsworth et al., “Large-scale evaluation of the immuno-mycologics lateral flow and enzyme-linked immunoassays for detection of cryptococcal antigen in serum and cerebrospinal fluid,” Clinical and Vaccine Immunology, vol. 20, no. 1, pp. 52–55, 2013. View at Publisher · View at Google Scholar
  17. D. B. Meya, Y. C. Manabe, B. Castelnuovo et al., “Cost-effectiveness of serum cryptococcal antigen screening to prevent deaths among HIV-infected persons with a CD4+ cell count ≤100 cells/μL who start HIV therapy in resource-limited settings,” Clinical Infectious Diseases, vol. 51, no. 4, pp. 448–455, 2010. View at Publisher · View at Google Scholar · View at Scopus