Table of Contents Author Guidelines Submit a Manuscript
Case Reports in Medicine
Volume 2014, Article ID 530239, 5 pages
http://dx.doi.org/10.1155/2014/530239
Case Report

Autologous Bone Marrow Mononuclear Cells in Ischemic Cerebrovascular Accident Paves Way for Neurorestoration: A Case Report

1Department of Medical Services and Clinical Research, Neurogen, Brain and Spine Institute Private Limited, Surana Sethia Hospital and Research Centre, Suman Nagar, Sion Trombay Road, Chembur, Mumbai, Maharashtra 400071, India
2Department of Research and Development, Neurogen, Brain and Spine Institute Private Limited, Surana Sethia Hospital and Research Centre, Suman Nagar, Sion Trombay Road, Chembur, Mumbai, Maharashtra 400071, India
3Department of Neuro-Rehabilitation, Neurogen, Brain and Spine Institute Private Limited, Surana Sethia Hospital and Research Centre, Suman Nagar, Sion Trombay Road, Chembur, Mumbai, Maharashtra 400071, India

Received 4 July 2013; Revised 9 October 2013; Accepted 2 December 2013; Published 5 January 2014

Academic Editor: Nicola Smania

Copyright © 2014 Alok Sharma et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. A. Donnan, M. Fisher, M. Macleod, and S. M. Davis, “Stroke,” The Lancet, vol. 371, no. 9624, pp. 1612–1623, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Deb, S. Sharma, and K. M. Hassan, “Pathophysiologic mechanisms of acute ischemic stroke: an overview with emphasis on therapeutic significance beyond thrombolysis,” Pathophysiology, vol. 17, no. 3, pp. 197–218, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. H. P. Adams Jr., T. G. Brott, A. J. Furlan et al., “Guidelines for thrombolytic therapy for acute stroke: a supplement to the guidelines for the management of patients with acute ischemic stroke. A statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association,” Circulation, vol. 94, no. 5, pp. 1167–1174, 1996. View at Google Scholar · View at Scopus
  4. G. Kwakkel, B. Kollen, and E. Lindeman, “Understanding the pattern of functional recovery after stroke: facts and theories,” Restorative Neurology and Neuroscience, vol. 22, no. 3-4, pp. 281–299, 2004. View at Google Scholar · View at Scopus
  5. M. A. G. Friedrich, M. P. Martins, M. D. Araújo et al., “Intra-arterial infusion of autologous bone marrow mononuclear cells in patients with moderate to severe middle cerebral artery acute ischemic stroke,” Cell Transplantation, vol. 21, no. 1, pp. S13–S21, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Prasad, S. Mohanty, R. Bhatia et al., “Autologous intravenous bone marrow mononuclear cell therapy for patients with subacute ischaemic stroke: a pilot study,” Indian Journal of Medical Research, vol. 136, no. 2, pp. 221–228, 2012. View at Google Scholar
  7. R. V. Carlson, K. M. Boyd, and D. J. Webb, “The revision of the Declaration of Helsinki: past, present and future,” British Journal of Clinical Pharmacology, vol. 57, no. 6, pp. 695–713, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Sharma, N. Gokulchandran, G. Chopra et al., “Administration of autologous bone marrow-derived mononuclear cells in children with incurable neurological disorders and injury is safe and improves their quality of life,” Cell Transplantation, vol. 21, no. 1, pp. S79–S90, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. D. F. Stroncek, M. E. Clay, M. L. Petzoldt et al., “Treatment of normal individuals with granulocyte-colony-stimulating factor: donor experiences and the effects on peripheral blood CD34+ cell counts and on the collection of peripheral blood stem cells,” Transfusion, vol. 36, no. 7, pp. 601–610, 1996. View at Google Scholar · View at Scopus
  10. L. E. Glover, N. Tajiri, N. L. Weinbren et al., “A step-up approach for cell therapy in stroke: translational hurdles of bone marrow-derived stem cells,” Translational Stroke Research, vol. 3, no. 1, pp. 90–98, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Song, O. Mohamad, X. Gu, L. Wei, and S. P. Yu, “Restoration of intracortical and thalamocortical circuits after transplantation of bone marrow mesenchymal stem cells into the ischemic brain of mice,” Cell Transplantation, vol. 22, no. 11, pp. 2001–2015, 2013. View at Publisher · View at Google Scholar
  12. X.-M. Zhang, F. Du, D. Yang et al., “Transplanted bone marrow stem cells relocate to infarct penumbra and co-express endogenous proliferative and immature neuronal markers in a mouse model of ischemic cerebral stroke,” BMC Neuroscience, vol. 11, article no. 138, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. C. V. Borlongan, L. E. Glover, N. Tajiri, Y. Kaneko, and T. B. Freeman, “The great migration of bone marrow-derived stem cells toward the ischemic brain: therapeutic implications for stroke and other neurological disorders,” Progress in Neurobiology, vol. 95, no. 2, pp. 213–228, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. M. A. Dimyan and L. G. Cohen, “Neuroplasticity in the context of motor rehabilitation after stroke,” Nature Reviews Neurology, vol. 7, no. 2, pp. 76–85, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Fabel, S. A. Wolf, D. Ehninger, H. Babu, P. Leal-Galicia, and G. Kempermann, “Additive effects of physical exercise and environmental enrichment on adult hippocampal neurogenesis in mice,” Frontiers in Neuroscience, vol. 3, article 50, 2009. View at Google Scholar