Table of Contents Author Guidelines Submit a Manuscript
Case Reports in Medicine
Volume 2014, Article ID 842872, 4 pages
http://dx.doi.org/10.1155/2014/842872
Case Report

Familial Thoracic Aortic Aneurysm with Dissection Presenting as Flash Pulmonary Edema in a 26-Year-Old Man

1Department of Internal Medicine, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA
2Department of Cardiothoracic Surgery, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA

Received 23 April 2014; Revised 2 June 2014; Accepted 21 June 2014; Published 7 July 2014

Academic Editor: Michael S. Firstenberg

Copyright © 2014 Sabry Omar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. D. Clouse, J. W. Hallett Jr., H. V. Schaff et al., “Acute aortic dissection: population-based incidence compared with degenerative aortic aneurysm rupture,” Mayo Clinic Proceedings, vol. 79, no. 2, pp. 176–180, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. D. M. Milewicz, H. Chen, E. Park et al., “Reduced penetrance and variable expressivity of familial thoracic aortic aneurysms/dissections,” American Journal of Cardiology, vol. 82, no. 4, pp. 474–479, 1998. View at Publisher · View at Google Scholar · View at Scopus
  3. J. L. Homme, M. Aubry, W. D. Edwards et al., “Surgical pathology of the ascending aorta: a clinicopathologic study of 513 cases,” The American Journal of Surgical Pathology, vol. 30, no. 9, pp. 1159–1168, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Wang, D. Guo, J. Cao et al., “Mutations in myosin light chain kinase cause familial aortic dissections,” The American Journal of Human Genetics, vol. 87, no. 5, pp. 701–707, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. D. M. Milewicz, D. Guo, A. L. Lafont et al., “Genetic basis of thoracic aortic aneurysms and dissections: focus on smooth muscle cell contractile dysfunction,” Annual Review of Genomics and Human Genetics, vol. 9, pp. 283–302, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Guo, S. Hasham, S. Kuang et al., “Familial thoracic aortic aneurysms and dissections genetic: heterogeneity with a major locus mapping to 5q13-14,” Circulation, vol. 103, no. 20, pp. 2461–2468, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Guo, E. S. Regalado, C. Minn et al., “Familial thoracic aortic aneurysms and dissections identification of a novel locus for stable aneurysms with a low risk for progression to aortic dissection,” Circulation: Cardiovascular Genetics, vol. 4, no. 1, pp. 36–42, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Albornoz, M. A. Coady, M. Roberts et al., “Familial thoracic aortic aneurysms and dissections—incidence, modes of inheritance, and phenotypic patterns,” Annals of Thoracic Surgery, vol. 82, no. 4, pp. 1400–1405, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Zhu, R. Vranckx, P. K. Van Kien et al., “Mutations in myosin heavy chain 11 cause a syndrome associating thoracic aortic aneurysm/aortic dissection and patent ductus arteriosus,” Nature Genetics, vol. 38, no. 3, pp. 343–349, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Pannu, V. Tran-Fadulu, C. L. Papke et al., “MYH11 mutations result in a distinct vascular pathology driven by insulin-like growth factor 1 and angiotensin II,” Human Molecular Genetics, vol. 16, no. 20, pp. 2453–2462, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Guo, H. Pannu, V. Tran-Fadulu et al., “Mutations in smooth muscle α-actin (ACTA2) lead to thoracic aortic aneurysms and dissections,” Nature Genetics, vol. 39, no. 12, pp. 1488–1493, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Boileau, D. Guo, N. Hanna et al., “TGFB2 mutations cause familial thoracic aortic aneurysms and dissections associated with mild systemic features of Marfan syndrome,” Nature Genetics, vol. 44, no. 8, pp. 916–921, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Suzuki, E. Bossone, D. Sawaki et al., “Biomarkers of aortic diseases. Biomarkers of aortic disease,” American Heart Journal, vol. 165, no. 1, pp. 15–25, 2013. View at Google Scholar
  14. L. A. Pape, T. T. Tsai, E. M. Isselbacher et al., “Aortic diameter ≥5.5 cm is not a good predictor of type A aortic dissection: observations from the International Registry of Acute Aortic Dissection (IRAD),” Circulation, vol. 116, no. 10, pp. 1120–1127, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. L. F. Hiratzka, G. L. Bakris, J. A. Beckman et al., “American College of Cardiology Foundation; ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with thoracic aortic disease: executive summary. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, American Association for thoracic surgery, American College of radiology, American stroke association, society of cardiovascular anesthesiologists, society for cardiovascular angiography and interventions, society of interventional radiology, society of thoracic surgeons, and society for vascular medicine,” Catheterization and Cardiovascular Intervention, vol. 76, pp. E43–E86, 2010. View at Google Scholar