Table of Contents Author Guidelines Submit a Manuscript
Case Reports in Neurological Medicine
Volume 2013, Article ID 141983, 6 pages
http://dx.doi.org/10.1155/2013/141983
Case Report

Positron Emission Tomography—Computer Tomography Scan Used as a Monitoring Tool Following Cellular Therapy in Cerebral Palsy and Mental Retardation—A Case Report

1Department of Medical Services and Clinical Research, NeuroGen, Brain and Spine institute Private limited, Surana Sethia—Hospital and Research Centre, Suman Nagar, SionTrombay Road, Chembur, Mumbai 400071, Maharashtra, India
2Department of Research and Development, NeuroGen, Brain and Spine institute Private limited, Surana Sethia—Hospital and Research Centre, Suman Nagar, SionTrombay Road, Chembur, Mumbai 400071, Maharashtra, India
3Department of Neuro-Rehabilitation, NeuroGen, Brain and Spine institute Private limited, Surana Sethia—Hospital and Research Centre, Suman Nagar, SionTrombay Road, Chembur, Mumbai 400071, Maharashtra, India
4Consultant Neuropathologist, Department of Medical Services and Clinical Research, NeuroGen, Brain and Spine institute Private limited Surana Sethia—Hospital and Research Centre Suman Nagar, SionTrombay Road, Chembur Mumbai 400071, Maharashtra, India

Received 31 October 2012; Accepted 6 December 2012

Academic Editors: H. Ikeda, Y. Iwasaki, and J.-H. Park

Copyright © 2013 Alok Sharma et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Rosenbaum, N. Paneth, A. Leviton et al., “A report: the definition and classification of cerebral palsy April 2006,” Developmental Medicine and Child Neurology, vol. 109, pp. 8–14, 2007. View at Google Scholar · View at Scopus
  2. L. Salvador-Carulla, G. M. Reed, L. M. Vaez-Azizi et al., “Intellectual developmental disorders: towards a new name, definition and framework for “mental retardation/intellectual disability” in ICD-11,” World Psychiatry, vol. 10, no. 3, pp. 175–180, 2011. View at Google Scholar
  3. Y. J. Crow and J. L. Tolmie, “Recurrence risks in mental retardation,” Journal of Medical Genetics, vol. 35, no. 3, pp. 177–182, 1998. View at Google Scholar · View at Scopus
  4. M. G. Rosen and J. C. Dickinson, “The incidence of cerebral palsy,” American Journal of Obstetrics and Gynecology, vol. 167, no. 2, pp. 417–423, 2003. View at Google Scholar · View at Scopus
  5. G. Katz and E. Lazcano-Ponce, “Intellectual disability: definition, etiological factors, classification, diagnosis, treatment and prognosis,” Salud Publica de Mexico, vol. 50, supplement 2, pp. S132–S141, 2008. View at Google Scholar · View at Scopus
  6. D. S. Reddihough and K. J. Collins, “The epidemiology and causes of cerebral palsy,” Australian Journal of Physiotherapy, vol. 49, no. 1, pp. 7–12, 2003. View at Google Scholar · View at Scopus
  7. V. C. Jacob, H. Biju, and A. Sharma, Neurorehabilitation A Multidisciplinary Approach, NeuroGen Brain and Spine Institute, Mumbai, India, 1st edition, 2011.
  8. M. R. Delgado, D. Hirtz, M. Aisen et al., “Practice parameter: pharmacologic treatment of spasticity in children and adolescents with cerebral palsy (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society,” Neurology, vol. 74, no. 4, pp. 336–343, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Y. Chung, C. L. Chen, and A. M. K. Wong, “Pharmacotherapy of spasticity in children with cerebral palsy,” Journal of the Formosan Medical Association, vol. 110, no. 4, pp. 215–222, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. J. L. McGinley, F. Dobson, R. Ganeshalingam, B. J. Shore, E. Rutz, and H. K. Graham, “Single-event multilevel surgery for children with cerebral palsy: a systematic review,” Developmental Medicine & Child Neurology, vol. 54, no. 2, pp. 117–128, 2012. View at Google Scholar
  11. M. Smeulders, A. Coester, and M. Kreulen, “Surgical treatment for the thumb-in-palm deformity in patients with cerebral palsy,” Cochrane Database of Systematic Reviews, no. 4, p. CD004093, 2005. View at Google Scholar · View at Scopus
  12. B. J. Shore, N. White, and H. K. Graham, “Surgical correction of equinus deformity in children with cerebral palsy: a systematic review,” Journal of Children's Orthopaedics, vol. 4, no. 4, pp. 277–290, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Gogel, M. Gubernatorand, and S. L. Minger, “Progress and prospects: stem cells and neurological disease,” Gene Therapy, vol. 18, pp. 1–6, 2011. View at Google Scholar
  14. S. Hombach-Klonisch, S. Panigrahi, I. Rashedi et al., “Adult stem cells and their trans-differentiation potential—perspectives and therapeutic applications,” Journal of Molecular Medicine, vol. 86, no. 12, pp. 1301–1314, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. S. U. Kim and J. de Vellis, “Stem cell-based cell therapy in neurological diseases: a review,” Journal of Neuroscience Research, vol. 87, no. 10, pp. 2183–2200, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. J. E. Carroll and R. W. Mays, “Update on stem cell therapy for cerebral palsy,” Expert Opinion on Biological Therapy, vol. 11, no. 4, pp. 463–471, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. A. K. Sharma, P. Kulkarni, H. Sane et al., “Positron Emission tomography—computed tomography scan captures the effects of cellular therapy in a case of cerebral palsy,” Journal of Clinical Case Reports, vol. 2, p. 195, 2012. View at Google Scholar
  18. R. V. Carlson, K. M. Boyd, and D. J. Webb, “The revision of the declaration of Helsinki: past, present and future,” British Journal of Clinical Pharmacology, vol. 57, no. 6, pp. 695–713, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. O. Verschuren, L. Ada, D. B. Maltais, J. W. Gorter, A. Scianni, and M. Ketelaar, “Muscle strengthening in children and adolescents with spastic cerebral palsy: considerations for future resistance training protocols,” Physical Therapy, vol. 91, pp. 1130–1139, 2011. View at Google Scholar
  20. H. Anttila, I. Autti-Rämö, J. Suoranta, M. Mäkelä, and A. Malmivaara, “Effectiveness of physical therapy interventions for children with cerebral palsy: a systematic review,” BMC Pediatrics, vol. 8, article 14, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. E. M. J. Steultjens, J. Dekker, L. M. Bouter, J. C. M. van des Nes, B. L. M. Lambregts, and C. H. M. van den Ende, “Occupational therapy for children with cerebral palsy: a systematic review,” Clinical Rehabilitation, vol. 18, no. 1, pp. 1–14, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. L. Pennington, J. Goldbart, and J. Marshall, “Speech and language therapy to improve the communication skills of children with cerebral palsy,” Cochrane Database of Systematic Reviews, no. 2, p. CD003466, 2004. View at Google Scholar · View at Scopus
  23. S. M. Scheck, R. N. Boyd, and S. E. Ros, “New insights into the pathology of white matter tracts in cerebral palsy from diffusion magnetic resonance imaging: a systematic review,” Developmental Medicine & Child Neurology, vol. 54, no. 8, pp. 684–696, 2012. View at Google Scholar
  24. E. Martin-Rendon, S. Brunskill, C. Dorée et al., “Stem cell treatment for acute myocardial infarction,” Cochrane Database of Systematic Reviews, no. 2, p. CD006536, 2008. View at Google Scholar · View at Scopus
  25. K. Moazzami, R. Majdzadeh, and S. Nedjat, “Local intramuscular transplantation of autologous mononuclear cells for critical lower limb ischemia,” Cochrane Database of Systematic Reviews, no. 12, Article ID CD008347, 2011. View at Google Scholar
  26. W. Prasongchean and P. Ferretti, “Autologous stem cells for personalized medicine,” Journal of Biotechnology, vol. 29, no. 6, pp. 641–650, 2012. View at Google Scholar
  27. D. I. Jung, J. Ha, B. T. Kang et al., “A comparison of autologous and allogenic bone marrow-derived mesenchymal stem cell transplantation in canine spinal cord injury,” Journal of the Neurological Sciences, vol. 285, no. 1-2, pp. 67–77, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. J. A. Miyan, M. Zendah, F. Mashayekhi, and P. J. Owen-Lynch, “Cerebrospinal fluid supports viability and proliferation of cortical cells in vitro, mirroring in vivo development,” Cerebrospinal Fluid Research, vol. 3, article 2, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. F. H. Chen and R. S. Tuan, “Mesenchymal stem cells in arthritic diseases,” Arthritis Research and Therapy, vol. 10, no. 5, article 223, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Corti, M. Nizzardo, C. Simone et al., “Direct reprogramming of human astrocytes into neural stem cells and neurons,” Experimental Cell Research, vol. 318, no. 13, pp. 1528–1541, 2012. View at Google Scholar
  31. S. Kanji, V. J. Pompili, and H. Das, “Plasticity and maintenance of hematopoietic stem cells during development,” Recent Patents on Biotechnology, vol. 5, no. 1, pp. 40–53, 2011. View at Google Scholar · View at Scopus
  32. R. Y. L. Tsai, R. Kittappa, and R. D. G. McKay, “Plasticity, niches, and the use of stem cells,” Developmental Cell, vol. 2, no. 6, pp. 707–712, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. N. Payne, C. Siatskas, A. Barnard, and C. C. A. Bernard, “The prospect of stem cells as multi-faceted purveyors of immune modulation, repair and regeneration in multiple sclerosis,” Current Stem Cell Research and Therapy, vol. 6, no. 1, pp. 50–62, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. P. M. Chen, M. L. Yen, K. J. Liu, H. K. Sytwu, and B. L. Yen, “Immuno-modulatory properties of human adult and fetal multipotent mesenchymal stem cells,” Journal of Biomedical Sciences, vol. 18, article 49, 2011. View at Google Scholar
  35. P. R. Crisostomo, M. Wang, C. M. Herring et al., “Gender differences in injury induced mesenchymal stem cell apoptosis and VEGF, TNF, IL-6 expression: role of the 55 kDa TNF receptor (TNFR1),” Journal of Molecular and Cellular Cardiology, vol. 42, no. 1, pp. 142–149, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Burlacu, G. Grigorescu, A. M. Rosca, M. B. Preda, and M. Simionescu, “Factors secreted by mesenchymal stem cells and endothelial progenitor cells have complementary effects on angiogenesis in vitro,” Stem Cells Development. In press.
  37. M. X. Xiang, A. N. He, J. A. Wang, and C. Gui, “Protective paracrine effect of mesenchymal stem cells on cardiomyocytes,” Journal of Zhejiang University B, vol. 10, no. 8, pp. 619–624, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. P. R. Crisostomo, M. Wang, T. A. Markel et al., “Stem cell mechanisms and paracrine effects: potential in cardiac surgery,” Shock, vol. 28, no. 4, pp. 375–383, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Gnecchi, Z. Zhang, A. Ni, and V. J. Dzau, “Paracrine mechanisms in adult stem cell signaling and therapy,” Circulation Research, vol. 103, no. 11, pp. 1204–1219, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. Y. D. Teng, W. L. Liao, H. Choi et al., “Physical activity-mediated functional recovery after spinal cord injury: potential roles of neural stem cells,” Regenerative Medicine, vol. 1, no. 6, pp. 763–776, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. M. E. Raichle, “Visualizing the mind,” Scientific American, vol. 270, no. 4, pp. 58–64, 1994. View at Google Scholar · View at Scopus
  42. E. K. J. Pauwels, M. J. Ribeiro, J. H. M. B. Stoot, V. R. McCready, M. Bourguignon, and B. Mazière, “FDG accumulation and tumor biology,” Nuclear Medicine and Biology, vol. 25, no. 4, pp. 317–322, 1998. View at Publisher · View at Google Scholar · View at Scopus
  43. J. A. Thie, “Understanding the standardized uptake value, its methods, and implications for usage,” Journal of Nuclear Medicine, vol. 45, no. 9, pp. 1431–1434, 2004. View at Google Scholar · View at Scopus
  44. S. Ahmad Sarji, “Physiological uptake in FDG PET simulating disease,” Biomedical Imaging and Intervention Journal, vol. 2, no. 4, article e59, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. R. Boellaard, N. C. Krak, O. S. Hoekstra, and A. A. Lammertsma, “Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: a simulation study,” Journal of Nuclear Medicine, vol. 45, no. 9, pp. 1519–1527, 2004. View at Google Scholar · View at Scopus
  46. M. C. Adams, T. G. Turkington, J. M. Wilson, and T. Z. Wong, “A systematic review of the factors affecting accuracy of SUV measurements,” American Journal of Roentgenology, vol. 195, no. 2, pp. 310–320, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. V. C. N. Wong, J. G. Sun, and D. W. C. Yeung, “Pilot study of positron emission tomography (PET) brain glucose metabolism to assess the efficacy of tongue and body acupuncture in cerebral palsy,” Journal of Child Neurology, vol. 21, no. 6, pp. 455–462, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. J. F. Kerrigan, H. T. Chugani, and M. E. Phelps, “Regional cerebral glucose metabolism in clinical subtypes of cerebral palsy,” Pediatric Neurology, vol. 7, no. 6, pp. 415–425, 1991. View at Publisher · View at Google Scholar · View at Scopus
  49. A. Varrone, S. Asenbaum, T. Vander Borght et al., “EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 36, no. 12, pp. 2103–2110, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Beninato, K. M. Gill-Body, S. Salles, P. C. Stark, R. M. Black-Schaffer, and J. Stein, “Determination of the minimal clinically important difference in the FIM instrument in patients with stroke,” Archives of Physical Medicine and Rehabilitation, vol. 87, no. 1, pp. 32–39, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. S. Blomqvist, J. Olsson, L. Wallin, A. Wester, and B. Rehn, “Adolescents with intellectual disability have reduced postural balance and muscle performance in trunk and lower limbs compared to peers without intellectual disability,” Research in Developmental Disability, vol. 34, no. 1, pp. 198–206, 2012. View at Google Scholar