Table of Contents Author Guidelines Submit a Manuscript
Case Reports in Transplantation
Volume 2012 (2012), Article ID 721857, 4 pages
http://dx.doi.org/10.1155/2012/721857
Case Report

Successful Hematopoietic Stem Cell Transplantation Following a Cyclophosphamide-Containing Preparative Regimen with Concomitant Phenobarbital Administration

1Department of Pharmacy, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
2Department of Bone Marrow Transplantation, Taussig Cancer Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
3Department of Hematologic Oncology and Blood Disorders, Taussig Cancer Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA

Received 12 July 2012; Accepted 17 September 2012

Academic Editors: I. Engelmann, J. Jazbec, S. Le Gouill, N. Leveque, and G. Schlaf

Copyright © 2012 Catherine Weber et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. J. Yu, P. Drewes, K. Gustafsson, E. G. C. Brain, J. E. D. Hecht, and D. J. Waxman, “In vivo modulation of alternative pathways of P-450-catalyzed cyclophosphamide metabolism: impact on pharmacokinetics and antitumor activity,” Journal of Pharmacology and Experimental Therapeutics, vol. 288, no. 3, pp. 928–937, 1999. View at Google Scholar · View at Scopus
  2. D. S. Alberts and T. van Daalen Wetters, “The effect of phenobarbital on cyclophosphamide antitumor activity,” Cancer Research, vol. 36, no. 8, pp. 2785–2789, 1976. View at Google Scholar · View at Scopus
  3. M. G. Donelli, A. Guaitani, I. Bartosek, A. Bossi, T. Colombo, and S. Garattini, “Effect of phenobarbital on cyclophosphamide metabolism in rats,” Xenobiotica, vol. 6, no. 10, pp. 625–631, 1976. View at Google Scholar · View at Scopus
  4. M. G. Donelli, A. Vecchi, A. Bossi et al., “Effect of phenobarbital on cyclophosphamide cytotoxic activity and pharmacokinetics in mice,” Tumori, vol. 63, no. 2, pp. 137–146, 1977. View at Google Scholar · View at Scopus
  5. D. S. Alberts, Y. M. Peng, H. S. Chen, and R. F. Struck, “Effect of phenobarbital on plasma levels of cyclophosphamide and its metabolites in the mouse,” British Journal of Cancer, vol. 38, no. 2, pp. 316–324, 1978. View at Google Scholar · View at Scopus
  6. T. K. H. Chang, L. Yu, P. Maurel, and D. J. Waxman, “Enhanced cyclophosphamide and ifosfamide activation in primary human hepatocyte cultures: response to cytochrome P-450 inducers and autoinduction by oxazaphosphorines,” Cancer Research, vol. 57, no. 10, pp. 1946–1954, 1997. View at Google Scholar · View at Scopus
  7. A. V. Boddy, Y. Furtun, S. Sardas, O. Sardas, and J. R. Idle, “Individual variation in the activation and inactivation of metabolic pathways of cyclophosphamide,” Journal of the National Cancer Institute, vol. 84, no. 22, pp. 1744–1748, 1992. View at Google Scholar · View at Scopus
  8. S. M. Yule, A. V. Boddy, M. Cole et al., “Cyclophosphamide metabolism in children,” Cancer Research, vol. 55, no. 4, pp. 803–809, 1995. View at Google Scholar · View at Scopus
  9. D. Busse, F. W. Busch, F. Bohnenstengel et al., “Dose escalation of cyclophosphamide in patients with breast cancer: consequences for pharmacokinetics and metabolism,” Journal of Clinical Oncology, vol. 15, no. 5, pp. 1885–1896, 1997. View at Google Scholar · View at Scopus
  10. G. B. McDonald, J. T. Slattery, M. E. Bouvier et al., “Cyclophosphamide metabolism, liver toxicity, and mortality following hematopoietic stem cell transplantation,” Blood, vol. 101, no. 5, pp. 2043–2048, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Glotzbecker, C. Duncan, E. Alyea III, B. Campbell, and R. Soiffer, “Important drug interactions in hematopoietic stem cell transplantation: what every physician should know,” Biology of Blood and Marrow Transplantation, vol. 18, no. 7, pp. 989–1006, 2012. View at Google Scholar
  12. C. M. Bagley Jr., F. W. Bostick, and V. T. DeVita Jr., “Clinical pharmacology of cyclophosphamide,” Cancer Research, vol. 33, no. 2, pp. 226–233, 1973. View at Google Scholar · View at Scopus
  13. T. L. Chen, J. L. Passos-Coelho, D. A. Noe et al., “Nonlinear pharmacokinetics of cyclophosphamide in patients with metastatic breast cancer receiving high-dose chemotherapy followed by autologous bone marrow transplantation,” Cancer Research, vol. 55, no. 4, pp. 810–816, 1995. View at Google Scholar · View at Scopus
  14. M. Ghosn, P. Carde, B. Leclerq et al., “Ifosfamide/mesna related encephalopathy: a case report with a possible role of phenobarbital in enhancing neurotoxicity,” Bulletin du Cancer, vol. 75, no. 4, pp. 391–392, 1988. View at Google Scholar · View at Scopus
  15. F. Lokiec, J. Santoni, S. Weill, and M. Tubiana-Hulin, “Phenobarbital administration does not affect high-dose ifosfamide pharmacokinetics in humans,” Anti-Cancer Drugs, vol. 7, no. 8, pp. 893–896, 1996. View at Google Scholar · View at Scopus
  16. T. Kerbusch, R. L. H. Jansen, R. A. A. Mathôt et al., “Modulation of the cytochrome P450-mediated metabolism of ifosfamide by ketoconazole and rifampin,” Clinical Pharmacology and Therapeutics, vol. 70, no. 2, pp. 132–141, 2001. View at Publisher · View at Google Scholar · View at Scopus