Canadian Respiratory Journal
 Journal metrics
Acceptance rate26%
Submission to final decision45 days
Acceptance to publication33 days
CiteScore2.600
Impact Factor1.639

Ghrelin Protects Lipopolysaccharide-Induced Acute Lung Injury Rats against Pulmonary Vascular Dysfunction by Inhibiting Inflammation

Read the full article

 Journal profile

Canadian Respiratory Journal provides a multidisciplinary forum for research in all areas of respiratory medicine. The journal publishes research related to asthma, allergy, COPD, non-invasive ventilation, therapeutic intervention etc.

 Editor spotlight

Canadian Respiratory Journal maintains an Editorial Board of practicing researchers from around the world, to ensure manuscripts are handled by editors who are experts in the field of study.

 Special Issues

Do you think there is an emerging area of research that really needs to be highlighted? Or an existing research area that has been overlooked or would benefit from deeper investigation? Raise the profile of a research area by leading a Special Issue.

Latest Articles

More articles
Research Article

Increased Levels of ER Stress and Apoptosis in a Sheep Model for Pulmonary Fibrosis Are Alleviated by In Vivo Blockade of the KCa3.1 Ion Channel

Idiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease, characterized by progressive damage to the lung tissues. Apoptosis and endoplasmic reticulum stress (ER stress) in type II alveolar epithelial cells (AECs) and lung macrophages have been linked with the development of IPF. Therefore, apoptosis- and ER stress-targeted therapies have drawn attention as potential avenues for treatment of IPF. The calcium-activated potassium ion channel KCa3.1 has been proposed as a potential therapeutic target for fibrotic diseases including IPF. While KCa3.1 is expressed in AECs and macrophages, its influence on ER stress and apoptosis during the disease process is unclear. We utilized a novel sheep model of pulmonary fibrosis to demonstrate that apoptosis and ER stress occur in type II AECs and macrophages in sheep with bleomycin-induced lung fibrosis. Apoptosis in type II AEC and macrophages was identified using the TUNEL method of tagging fragmented nuclear DNA, while ER stress was characterized by increased expression of GRP-78 ER chaperone proteins. We demonstrated that apoptosis and ER stress in type II AECs and macrophages increased significantly 2 weeks after the final bleomycin infusion and remained high for up to 7 weeks post-bleomycin injury. Senicapoc treatment significantly reduced the rates of ER stress in type II AECs and macrophages that were resident in bleomycin-infused lung segments. There were also significant reductions in the rates of apoptosis of type II AECs and macrophages in the lung segments of senicapoc-treated sheep. In vivo blockade of the KCa3.1 ion channel alleviates the ER stress and apoptosis in type II AECs and macrophages, and this effect potentially contributes to the anti-fibrotic effects of senicapoc.

Research Article

Bronchotracheal Stenting Management by Rigid Bronchoscopy under Extracorporeal Membrane Oxygenation (ECMO) Support: 10 Years of Experience in a Tertiary Center

Purpose. Airway stenting offers good palliation and improves the quality of life in patients with inoperable bronchotracheal stenosis. However, in some cases, the management of stenting can be life-threatening. Hence, a strategy for maintaining oxygenation and hemodynamic stability should be anticipated to avoid critical situations. Herein, we report the use of extracorporeal membrane oxygenation (ECMO) in bronchotracheal stenting management to secure oxygenation and facilitate interventions. Methods. We retrospectively reviewed all patients who underwent rigid bronchoscopy under ECMO support for the management of bronchotracheal stenting at CHU UCL Namur hospital (Belgium), between January 2009 and December 2019. Results. We included 14 bronchoscopy cases performed on 11 patients (3 patients underwent 2 bronchoscopies) in this study; 12 were performed on males and 2 on females. The median age was 54 years. There were 11 benign and 3 malignant etiologies for the central airway obstruction/stenosis. Eight cases were supported by venovenous ECMO and six by venoarterial ECMO. The median ECMO time was 267 minutes. The weaning of ECMO support was successful in all cases. In most cases, the procedures were performed effectively and safely. Only two local complications caused by the cannulation of ECMO were reported, and anticoagulation was adapted to avoid bleeding at the operating site and clot formation in the system. Conclusion. Elective ECMO support was helpful and safe for the high-risk management of bronchotracheal stenting with rigid bronchoscopy and was not associated with any additional significant complications.

Research Article

Inhibitory Effect of Paquinimod on a Murine Model of Neutrophilic Asthma Induced by Ovalbumin with Complete Freund’s Adjuvant

Background. Quinoline-3-carboxamides have been used to treat autoimmune/inflammatory diseases in humans because they inhibit the functions of S100 calcium-binding protein A9 (S100A9), which participates in the development of neutrophilic inflammation in asthmatics and in an animal model of neutrophilic asthma. However, the therapeutic effects of these chemicals have not been evaluated in asthma. The purpose of this study was to evaluate the effect of paquinimod, one of the quinoline-3-carboxamides, on a murine model of neutrophilic asthma. Methods. Paquinimod was orally administered to 6-week-old C57BL/6 mice sensitized and challenged with ovalbumin (OVA)/complete Freund’s adjuvant (CFA) and OVA. Lung inflammation and remodeling were evaluated using bronchoalveolar lavage (BAL) and histologic findings including goblet cell count. S100A9, caspase-1, IL-1β, MPO, IL-17, IFN-γ, and TNF-α were measured in lung lysates using western blotting. Results. Paquinimod restored the enhancement of airway resistance and the increases in numbers of neutrophils and macrophages of BAL fluids and those of goblet cells in OVA/CFA mice toward the levels of sham-treated mice in a dose-dependent manner (0.1, 1, 10, and 25 mg/kg/day, p.o.). Concomitantly, p20 activated caspase-1, IL-1β, IL-17, TNF-α, and IFN-γ levels were markedly attenuated. Conclusion. These data indicate that paquinimod effectively inhibits neutrophilic inflammation and remodeling in the murine model of neutrophilic asthma, possibly via downregulation of IL-17, IFN-γ, and IL-1β.

Research Article

Development and Relevance of Hypercapnia in COPD

Background. Identification of patients who may become hypercapnic, or develop acidotic hypercapnic respiratory failure (AHRF), is important in chronic obstructive pulmonary disease (COPD) to avoid hospital admission and select patients for use of home NIV. This study aimed to identify factors associated with presence and development of hypercapnia. Methods. 1224 patients, 637 with COPD and 587 with alpha 1 antitrypsin deficiency (AATD), from 4 previously established patient cohorts, were included in cross-sectional analyses of hypercapnia (PaCO2 ≥ 6.5 kPa or 48.8 mmHg), focusing on phenotypic features of COPD and mortality. Longitudinal associations of rising PaCO2 were also assessed. A second cohort of 160 COPD patients underwent sleep studies and 1-year follow-up, analysing in a similar way, incorporating additional information from their sleep studies if appropriate. Results. Hypercapnia was 15 times more common in usual COPD than AATD () after adjustment for baseline differences by regression. Independent predictors of hypercapnia in COPD included FEV1 and current use of oxygen; these variables, together with lack of emphysema, explained 11% of variance in CO2. Increasing PaCO2 also associated with higher risk of death (). 44/160 patients exhibited sleep disordered breathing. The sleep study cohort also showed an association of low FEV1 with hypercapnia. Prior hospital admission for AHRF was also clinically significant, being a feature of almost double the number of hypercapnic patients in both test and sleep study COPD cohorts. Conclusion. Lower FEV1 and prior AHRF are the main associations of hypercapnia in COPD, which carries a poor prognosis, particularly worsening over time.

Research Article

A Follow-Up Study of Lung Function and Chest Computed Tomography at 6 Months after Discharge in Patients with Coronavirus Disease 2019

We aimed to investigate changes in pulmonary function and computed tomography (CT) findings in patients with coronavirus disease 2019 (COVID-19) during the recovery period. COVID-19 patients underwent symptom assessment, pulmonary function tests, and high-resolution chest CT 6 months after discharge from the hospital. Of the 54 patients enrolled, 31 and 23 were in the moderate and severe group, respectively. The main symptoms 6 months after discharge were fatigue and exertional dyspnea, experienced by 24.1% and 18.5% of patients, respectively, followed by smell and taste dysfunction (9.3%) and cough (5.6%). One patient dropped out of the pulmonary function tests. Of the remaining 54 patients, 41.5% had pulmonary dysfunction. Specifically, 7.5% presented with restrictive ventilatory dysfunction (forced vital capacity <80% of the predicted value), 18.9% presented with small airway dysfunction, and 32.1% presented with pulmonary diffusion impairment (diffusing capacity for carbon monoxide <80% of the predicted value). Of the 54 patients enrolled, six patients dropped out of the chest CT tests. Eleven of the remaining 48 patients presented with abnormal lung CT findings 6 months after discharge. Patients with residual lung lesions were more common in the severe group (52.6%) than in the moderate group (3.4%); a higher proportion of patients had involvement of both lungs (42.1% vs. 3.4%) in the severe group. The residual lung lesions were mainly ground-glass opacities (20.8%) and linear opacities (14.6%). Semiquantitative visual scoring of the CT findings revealed significantly higher scores in the left, right, and both lungs in the severe group than in the moderate group. COVID-19 patients 6 months after discharge mostly presented with fatigue and exertional dyspnea, and their pulmonary dysfunction was mostly characterized by pulmonary diffusion impairment. As revealed by chest CT, the severe group had a higher prevalence of residual lesions than the moderate group, and the residual lesions mostly manifested as ground-glass opacities and linear opacities.

Research Article

Distinct Antiviral Properties of Two Different Bacterial Lysates

Oral bacterial lysates (OBLs) can reduce the frequency and severity of recurrent respiratory tract infections in children from viral and bacterial origins. OBL-induced early innate immune reaction was already shown, but the specific features of different OBLs have never been studied and compared. A study was conducted to assess in vitro the protective effects on rhinovirus- (RV-) infected human bronchial epithelial cells (BECs) of two slightly different OBLs: OM-85 and Pulmonarom. Furthermore, since immune cells represent the key arm for antiviral defence, the capacity of these OBLs to induce selected cytokine production in mouse bone marrow-derived DCs (BMDCs) was also evaluated. Although different OBLs may share some mechanisms to protect host cells from virus infection, some product-specific antimicrobial activities were observed on RV-infected human BECs and mouse BMDCs. These results are consistent with a product-specific response possibly triggered by different pathogen-associated molecular patterns (PAMPs) contained in OBLs.

Canadian Respiratory Journal
 Journal metrics
Acceptance rate26%
Submission to final decision45 days
Acceptance to publication33 days
CiteScore2.600
Impact Factor1.639
 Submit