Canadian Respiratory Journal

Canadian Respiratory Journal / 2015 / Article

Original Article | Open Access

Volume 22 |Article ID 581504 | https://doi.org/10.1155/2015/581504

Carl A Severson, Sachin R Pendharkar, Paul E Ronksley, Willis H Tsai, "Use of Electronic Data and Existing Screening Tools to Identify Clinically Significant Obstructive Sleep Apnea", Canadian Respiratory Journal, vol. 22, Article ID 581504, 6 pages, 2015. https://doi.org/10.1155/2015/581504

Use of Electronic Data and Existing Screening Tools to Identify Clinically Significant Obstructive Sleep Apnea

Abstract

OBJECTIVES: To assess the ability of electronic health data and existing screening tools to identify clinically significant obstructive sleep apnea (OSA), as defined by symptomatic or severe OSA.METHODS: The present retrospective cohort study of 1041 patients referred for sleep diagnostic testing was undertaken at a tertiary sleep centre in Calgary, Alberta. A diagnosis of clinically significant OSA or an alternative sleep diagnosis was assigned to each patient through blinded independent chart review by two sleep physicians. Predictive variables were identified from online questionnaire data, and diagnostic algorithms were developed. The performance of electronically derived algorithms for identifying patients with clinically significant OSA was determined. Diagnostic performance of these algorithms was compared with versions of the STOP-Bang questionnaire and adjusted neck circumference score (ANC) derived from electronic data.RESULTS: Electronic questionnaire data were highly sensitive (>95%) at identifying clinically significant OSA, but not specific. Sleep diagnostic testing-determined respiratory disturbance index was very specific (specificity ≥95%) for clinically relevant disease, but not sensitive (<35%). Derived algorithms had similar accuracy to the STOP-Bang or ANC, but required fewer questions and calculations.CONCLUSIONS: These data suggest that a two-step process using a small number of clinical variables (maximizing sensitivity) and objective diagnostic testing (maximizing specificity) is required to identify clinically significant OSA. When used in an online setting, simple algorithms can identify clinically relevant OSA with similar performance to existing decision rules such as the STOP-Bang or ANC.

Copyright © 2015 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

 PDF Download Citation Citation
 Order printed copiesOrder
Views300
Downloads353
Citations

Related articles