Table of Contents Author Guidelines Submit a Manuscript
Cardiology Research and Practice
Volume 2011, Article ID 163281, 6 pages
http://dx.doi.org/10.4061/2011/163281
Research Article

The Impact of Demographic Characteristics and Lifestyle in the Distribution of Cystatin C Values in a Healthy Greek Adult Population

1Department of Internal Medicine, Polykliniki General Hospital, 10552 Athens, Greece
2Department of Dietetics and Nutritional Science, Harokopio University of Athens, 17671 Athens, Greece

Received 27 July 2010; Accepted 3 October 2010

Academic Editor: Undurti N. Das

Copyright © 2011 Angelos A. Evangelopoulos et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Grubb and H. Lofberg, “Human γ-trace, a basic microprotein: amino acid sequence and presence in the adenohypophysis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 79, no. 9, pp. 3024–3027, 1982. View at Google Scholar · View at Scopus
  2. A. J. Barrett, M. E. Davies, and A. Grubb, “The place of human γ-trace (cystatin C) amongst the cysteine proteinase inhibitors,” Biochemical and Biophysical Research Communications, vol. 120, no. 2, pp. 631–636, 1984. View at Google Scholar · View at Scopus
  3. A. J. Barrett, H. Fritz, A. Grubb et al., “Nomenclature and classification of the proteins homologous with the cysteine-proteinase inhibitor chicken cystatin,” Biochemical Journal, vol. 236, no. 1, p. 312, 1986. View at Google Scholar · View at Scopus
  4. O. Simonsen, A. Grubb, and H. Thysell, “The blood serum concentration of cystatin C (γ-trace) as a measure of the glomerular filtration rate,” Scandinavian Journal of Clinical and Laboratory Investigation, vol. 45, no. 2, pp. 97–101, 1985. View at Google Scholar · View at Scopus
  5. E. Randers and E. J. Erlandsen, “Serum cystatin C as an endogenous marker of the renal function—a review,” Clinical Chemistry and Laboratory Medicine, vol. 37, no. 4, pp. 389–395, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Abrahamson, I. Olafsson, A. Palsdottir et al., “Structure and expression of the human cystatin C gene,” Biochemical Journal, vol. 268, no. 2, pp. 287–294, 1990. View at Google Scholar · View at Scopus
  7. A. Grubb, “Diagnostic value of analysis of cystatin C and protein HC in biological fluids,” Clinical Nephrology, vol. 38, no. 1, pp. S20–S27, 1992. View at Google Scholar · View at Scopus
  8. E. Coll, A. Botey, L. Alvarez et al., “Serum cystatin C as a new marker for noninvasive estimation of glomerular filtration rate and as a marker for early renal impairment,” American Journal of Kidney Diseases, vol. 36, no. 1, pp. 29–34, 2000. View at Google Scholar · View at Scopus
  9. M. G. Shlipak, R. Katz, M. J. Sarnak et al., “Cystatin C and prognosis for cardiovascular and kidney outcomes in elderly persons without chronic kidney disease,” Annals of Internal Medicine, vol. 145, no. 4, pp. 237–246, 2006. View at Google Scholar · View at Scopus
  10. M. G. Shlipak, M. J. Sarnak, R. Katz et al., “Cystatin C and the risk of death and cardiovascular events among elderly persons,” The New England Journal of Medicine, vol. 352, no. 20, pp. 2049–2060, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. A. S. Levey, K.-U. Eckardt, Y. Tsukamoto et al., “Definition and classification of chronic kidney disease: a position statement from kidney disease: improving global outcomes (KDIGO),” Kidney International, vol. 67, no. 6, pp. 2089–2100, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. A. S. Levey, J. Coresh, E. Balk et al., “National kidney foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification,” Annals of Internal Medicine, vol. 139, no. 2, pp. 137–I36, 2003. View at Google Scholar · View at Scopus
  13. M.-M. Galteau, M. Guyon, R. Gueguen, and G. Siest, “Determination of serum cystatin C: biological variation and reference values,” Clinical Chemistry and Laboratory Medicine, vol. 39, no. 9, pp. 850–857, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Uzun, M. Ozmen Keles, R. Ataman et al., “Serum cystatin C level as a potentially good marker for impaired kidney function,” Clinical Biochemistry, vol. 38, no. 9, pp. 792–798, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Ognibene, E. Mannucci, A. Caldini et al., “Cystatin C reference values and aging,” Clinical Biochemistry, vol. 39, no. 6, pp. 658–661, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. E. Wasén, R. Isoaho, K. Mattila, T. Vahlberg, S.-L. Kivelä, and K. Irjala, “Serum cystatin C in the aged: relationships with health status,” American Journal of Kidney Diseases, vol. 42, no. 1, pp. 36–43, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. E. J. Erlandsen, E. Randers, and J. H. Kristensen, “Reference intervals for serum cystatin C and serum creatinine in adults,” Clinical Chemistry and Laboratory Medicine, vol. 36, no. 6, pp. 393–397, 1998. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Fliser and E. Ritz, “Serum cystatin C concentration as a marker of renal dysfunction in the elderly,” American Journal of Kidney Diseases, vol. 37, no. 1, pp. 79–83, 2001. View at Google Scholar · View at Scopus
  19. E. L. Knight, J. C. Verhave, D. Spiegelman et al., “Factors influencing serum cystatin C levels other than renal function and the impact on renal function measurement,” Kidney International, vol. 65, no. 4, pp. 1416–1421, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. M. C. Odden, I. B. Tager, R. T. Gansevoort et al., “Age and cystatin C in healthy adults: a collaborative study,” Nephrology Dialysis Transplantation, vol. 25, no. 2, pp. 463–469, 2010. View at Publisher · View at Google Scholar
  21. K. Ichihara and T. Kawai, “Determination of reference intervals for 13 plasma proteins based on IFCC international reference preparation (CRM470) and NCCLS proposed guideline (C28-P, 1992): a strategy for partitioning reference individuals with validation based on multivariate analysis,” Journal of Clinical Laboratory Analysis, vol. 11, no. 2, pp. 117–124, 1997. View at Publisher · View at Google Scholar · View at Scopus
  22. A. O. Grubb, “Cystatin C-properties and use as diagnostic marker,” Advances in Clinical Chemistry, vol. 35, pp. 63–99, 2001. View at Google Scholar · View at Scopus
  23. D. J. Newman, H. Thakkar, R. G. Edwards et al., “Serum cystatin C measured by automated immunoassay: a more sensitive marker of changes in GFR than serum creatinine,” Kidney International, vol. 47, no. 1, pp. 312–318, 1995. View at Google Scholar · View at Scopus
  24. K. Ichihara, K. Saito, and Y. Itoh, “Sources of variation and reference intervals for serum cystatin C in a healthy Japanese adult population,” Clinical Chemistry and Laboratory Medicine, vol. 45, no. 9, pp. 1232–1236, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. P. Muntner, J. Winston, J. Uribarri, D. Mann, and C. S. Fox, “Overweight, obesity, and elevated serum cystatin C levels in adults in the United States,” American Journal of Medicine, vol. 121, no. 4, pp. 341–348, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Vupputuri, C. S. Fox, J. Coresh, M. Woodward, and P. Muntner, “Differential estimation of CKD using creatinine-versus cystatin C-based estimating equations by category of body mass index,” American Journal of Kidney Diseases, vol. 53, no. 6, pp. 993–1001, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Taleb, R. Cancello, K. Clément, and D. Lacasa, “Cathepsin S promotes human preadipocyte differentiation: possible involvement of fibronectin degradation,” Endocrinology, vol. 147, no. 10, pp. 4950–4959, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Taleb, D. Lacasa, J.-P. Bastard et al., “Cathepsin S, a novel biomarker of adiposity: relevance to atherogenesis,” FASEB Journal, vol. 19, no. 11, pp. 1540–1542, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. V. Menon, R. Katz, K. Mukamal et al., “Alcohol consumption and kidney function decline in the elderly. Alcohol and kidney disease,” Nephrology, Dialysis, Transplantation, vol. 25, no. 10, pp. 3301–3307, 2010. View at Google Scholar
  30. A. C. Baxmann, M. S. Ahmed, N. C. Marques et al., “Influence of muscle mass and physical activity on serum and urinary creatinine and serum cystatin C,” Clinical Journal of the American Society of Nephrology, vol. 3, no. 2, pp. 348–354, 2008. View at Publisher · View at Google Scholar