Table of Contents Author Guidelines Submit a Manuscript
Cardiology Research and Practice
Volume 2011 (2011), Article ID 173102, 7 pages
http://dx.doi.org/10.4061/2011/173102
Research Article

Noninvasive Detection of Left-Ventricular Systolic Dysfunction by Acoustic Cardiography in Atrial Fibrillation

1Division of Cardiology, Luzerner Kantonsspital, 6000 Luzern 16, Switzerland
2Inovise Medical, Inc., Beaverton, OR 97008, USA

Received 13 August 2010; Accepted 30 September 2010

Academic Editor: Filippos Triposkiadis

Copyright © 2011 Roger Dillier et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. H. Maisel and L. W. Stevenson, “Atrial fibrillation in heart failure: epidemiology, pathophysiology, and rationale for therapy,” American Journal of Cardiology, vol. 91, no. 6, pp. 2D–8D, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. G. M. de Ferrari, C. Klersy, P. Ferrero et al., “Atrial fibrillation in heart failure patients: prevalence in daily practice and effect on the severity of symptoms. Data from the ALPHA study registry,” European Journal of Heart Failure, vol. 9, no. 5, pp. 502–509, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. I. Savelieva and A. J. Camm, “Atrial fibrillation and heart failure: natural history and pharmacological treatment,” Europace, vol. 5, no. 1, pp. S5–S19, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. C.-L. Wang, W.-J. Ho, N. Luqman, L.-A. Hsu, and C.-T. Kuo, “Biplane assessment of left ventricular function during atrial fibrillation at beats with equal subsequent cycles,” International Journal of Cardiology, vol. 113, no. 1, pp. 54–60, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Tabata, R. A. Grimm, N. L. Greenberg et al., “Assessment of LV systolic function in atrial fibrillation using an index of preceding cardiac cycles,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 281, no. 2, pp. H573–H580, 2001. View at Google Scholar · View at Scopus
  6. M. Iwase, T. Aoki, M. Maeda, M. Yokota, and H. Hayashi, “Relationship between beat to beat interval and left ventricular function in patients with atrial fibrillation,” International Journal of Cardiac Imaging, vol. 3, no. 4, pp. 217–226, 1988. View at Google Scholar · View at Scopus
  7. B. Moyers, M. Shapiro, G. M. Marcus et al., “Performance of phonoelectrocardiographic left ventricular systolic time intervals and B-type natriuretic peptide levels in the diagnosis of left ventricular dysfunction,” Annals of Noninvasive Electrocardiology, vol. 12, no. 2, pp. 89–97, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Roos, S. Toggweiler, P. Jamshidi et al., “Noninvasive detection of left ventricular systolic dysfunction by acoustic cardiography in cardiac failure patients,” Journal of Cardiac Failure, vol. 14, no. 4, pp. 310–319, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Shapiro, B. Moyers, G. M. Marcus et al., “Diagnostic characteristics of combining phonocardiographic third heart sound and systolic time intervals for the prediction of left ventricular dysfunction,” Journal of Cardiac Failure, vol. 13, no. 1, pp. 18–24, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Roos, S. Toggweiler, M. Zuber, P. Jamshidi, and P. Erne, “Acoustic cardiographic parameters and their relationship to invasive hemodynamic measurements in patients with left ventricular systolic dysfunction,” Congestive Heart Failure, vol. 12, supplement 1, pp. 19–24, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. S. J. Shah and A. D. Michaels, “Hemodynamic correlates of the third heart sound and systolic time intervals,” Congestive Heart Failure, vol. 12, supplement 1, pp. 8–13, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Erne, “Beyond auscultation—acoustic cardiography in the diagnosis and assessment of cardiac disease,” Swiss Medical Weekly, vol. 138, no. 31-32, pp. 439–452, 2008. View at Google Scholar · View at Scopus
  13. C. F. Baicu, M. R. Zile, G. P. Aurigemma, and W. H. Gaasch, “Left ventricular systolic performance, function, and contractility in patients with diastolic heart failure,” Circulation, vol. 111, no. 18, pp. 2306–2312, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Yabe and S. Yoshimura, “Effect of inosine on left ventricular performance and its clinical significance,” Japanese Heart Journal, vol. 22, no. 6, pp. 915–928, 1981. View at Google Scholar · View at Scopus
  15. B. Gremmler, M. Kunert, H. Schleiting, K. Kisters, and L. J. Ulbricht, “Relation between N-terminal pro-brain natriuretic peptide values and invasively measured left ventricular hemodynamic indices,” Experimental and Clinical Cardiology, vol. 8, no. 2, pp. 91–94, 2003. View at Google Scholar · View at Scopus
  16. A. M. Weissler, “A perspective on standardizing the predictive power of noninvasive cardiovascular tests by likelihood ratio computation: 2. Clinical applications,” Mayo Clinic Proceedings, vol. 74, no. 11, pp. 1072–1087, 1999. View at Google Scholar · View at Scopus
  17. A. T. M. Gosselink, P. K. Blanksma, H. J. G. M. Crijns et al., “Left ventricular beat-to-beat performance in atrial fibrillation: contribution of Frank-Starling mechanism after short rather than long RR intervals,” Journal of the American College of Cardiology, vol. 26, no. 6, pp. 1516–1521, 1995. View at Publisher · View at Google Scholar · View at Scopus
  18. C.-L. Wang, W.-J. Ho, N. Luqman, L.-A. Hsu, and C.-T. Kuo, “Biplane assessment of left ventricular function during atrial fibrillation at beats with equal subsequent cycles,” International Journal of Cardiology, vol. 113, no. 1, pp. 54–60, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. S. W. Dubrey and R. H. Falk, “Optimal number of beats for the Doppler measurement of cardiac output in atrial fibrillation,” Journal of the American Society of Echocardiography, vol. 10, no. 1, pp. 67–71, 1997. View at Google Scholar · View at Scopus
  20. N. G. Bellenger, M. I. Burgess, S. G. Ray et al., “Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionuclide ventriculography and cardiovascular magnetic resonance. Are they interchangeable?” European Heart Journal, vol. 21, no. 16, pp. 1387–1396, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. O. M. Wazni, H.-M. Tsao, S.-A. Chen et al., “Cardiovascular imaging in the management of atrial fibrillation,” Journal of the American College of Cardiology, vol. 48, no. 10, pp. 2077–2084, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Toggweiler, M. Zuber, R. Kobza et al., “Improved response to cardiac resynchronization therapy through optimization of atrioventricular and interventricular delays using acoustic cardiography: a pilot study,” Journal of Cardiac Failure, vol. 13, no. 8, pp. 637–642, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Kligfield, “Systolic time intervals in atrial fibrillation and mitral stenosis,” British Heart Journal, vol. 36, no. 8, pp. 798–805, 1974. View at Google Scholar · View at Scopus
  24. A. Cieslinski, W. K. K. Hui, and P. J. Oldershaw, “Interaction between systolic and diastolic time intervals in atrial fibrillation,” British Heart Journal, vol. 51, no. 4, pp. 431–437, 1984. View at Google Scholar
  25. D. T. Mason, “Usefulness and limitations of the rate of rise of intraventricular pressure (dp/dt) in the evaluation of myocardial contractility in man*,” The American Journal of Cardiology, vol. 23, no. 4, pp. 516–527, 1969. View at Google Scholar · View at Scopus
  26. H. P. Krayenbuehl, W. Rutishauser, P. Wirz, I. Amende, and H. Mehmel, “High-fidelity left ventricular pressure measurements for the assessment of cardiac contractility in man,” The American Journal of Cardiology, vol. 31, no. 4, pp. 415–427, 1973. View at Google Scholar · View at Scopus
  27. H. D. Schmidt and H. Hoppe, “Preload dependence of dP/dt max, V(CE) max and calculated V max compared to the inotropic sensitivity of these indices of cardiac contractility,” Basic Research in Cardiology, vol. 73, no. 4, pp. 380–393, 1978. View at Google Scholar · View at Scopus
  28. T. J. Kolias, K. D. Aaronson, and W. F. Armstrong, “Doppler-derived dP/dt and -dP/dt predict survival in congestive heart failure,” Journal of the American College of Cardiology, vol. 36, no. 5, pp. 1594–1599, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Yamauchi-Kohno, T. Miyauchi, T. Hoshino et al., “Role of endothelin in deterioration of heart failure due to cardiomyopathy in hamsters: increase in endothelin-1 production in the heart and beneficial effect of endothelin-A receptor antagonist on survival and cardiac function,” Circulation, vol. 99, no. 16, pp. 2171–2176, 1999. View at Google Scholar · View at Scopus
  30. J. S. Dubiel, P. Petkow-Dimitrow, G. Kałuza, and T. Horzela, “Prognostic value of selected hemodynamic parameters featuring left ventricular systolic and diastolic function in patients with dilated cardiomyopathy,” Polskie Archiwum Medycyny Wewnetrznej, vol. 88, no. 6, pp. 392–400, 1992. View at Google Scholar · View at Scopus
  31. P. Arand, A. D. Michaels, M. Kontos, R. Warner, M. Gasperina, and S. Hesler, “Combined ECG and heart sounds parameters identifies patients with systolic dysfunction with or with-out elevated pressure. Heart Failure Society of America (HFSA),” Journal of Cardiac Failure, vol. 13, no. 6, p. S184, 2007. View at Google Scholar
  32. T. Chao, S. Sung, H. Cheng et al., “Electromechanical activation time in the prediction of discharge outcomes in patients hospitalized with acute heart failure syndrome,” Submitted.