Table of Contents Author Guidelines Submit a Manuscript
Cardiology Research and Practice
Volume 2011, Article ID 248626, 7 pages
http://dx.doi.org/10.4061/2011/248626
Research Article

Physical Activity and Adherence to Mediterranean Diet Increase Total Antioxidant Capacity: The ATTICA Study

1Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece
2First Cardiology Clinic, School of Medicine, University of Athens, Athens, 11528 Athens, Greece

Received 26 July 2010; Accepted 4 October 2010

Academic Editor: D. Giugliano

Copyright © 2011 Stavros A. Kavouras et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. McTiernan, “Physical activity, exercise, and cancer: prevention to treatment—symposium overview,” Medicine and Science in Sports and Exercise, vol. 35, no. 11, pp. 1821–1822, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. A. McTiernan, C. Kooperberg, E. White et al., “Recreational physical activity and the risk of breast cancer in postmenopausal women: the Women's Health Initiative Cohort Study,” Journal of the American Medical Association, vol. 290, no. 10, pp. 1331–1336, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. D. B. Panagiotakos, C. Pitsavos, C. Chrysohoou, S. Kavouras, and C. Stefanadis, “The associations between leisure-time physical activity and inflammatory and coagulation markers related to cardiovascular disease: the ATTICA Study,” Preventive Medicine, vol. 40, no. 4, pp. 432–437, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Pitsavos, S. A. Kavouras, D. B. Panagiotakos et al., “Physical activity status and acute coronary syndromes survival The GREECS (Greek Study of Acute Coronary Syndromes) study,” Journal of the American College of Cardiology, vol. 51, no. 21, pp. 2034–2039, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Pitsavos, D. B. Panagiotakos, C. Chrysohoou, S. Kavouras, and C. Stefanadis, “The associations between physical activity, inflammation, and coagulation markers, in people with metabolic syndrome: the ATTICA study,” European Journal of Cardiovascular Prevention and Rehabilitation, vol. 12, no. 2, pp. 151–158, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. K. J. A. Davies, A. T. Quintanilha, G. A. Brooks, and L. Packer, “Free radicals and tissue damage produced by exercise,” Biochemical and Biophysical Research Communications, vol. 107, no. 4, pp. 1198–1205, 1982. View at Google Scholar · View at Scopus
  7. C. K. Sen, M. Atalay, J. Ågren, D. E. Laaksonen, S. Roy, and O. Hänninen, “Fish oil and vitamin E supplementation in oxidative stress at rest and after physical exercise,” Journal of Applied Physiology, vol. 83, no. 1, pp. 189–195, 1997. View at Google Scholar · View at Scopus
  8. C. A. Gillette, Z. Zhu, K. C. Westerlind, C. L. Melby, P. Wolfe, and H. J. Thompson, “Energy availability and mammary carcinogenesis: effects of calorie restriction and exercise,” Carcinogenesis, vol. 18, no. 6, pp. 1183–1188, 1997. View at Publisher · View at Google Scholar · View at Scopus
  9. B. Garait, K. Couturier, S. Servais et al., “Fat intake reverses the beneficial effects of low caloric intake on skeletal muscle mitochondrial H2O2 production,” Free Radical Biology and Medicine, vol. 39, no. 9, pp. 1249–1261, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. R. C. M. Burneiko, Y. S. Diniz, C. M. Galhardi et al., “Interaction of hypercaloric diet and physical exercise on lipid profile, oxidative stress and antioxidant defenses,” Food and Chemical Toxicology, vol. 44, no. 7, pp. 1167–1172, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. V. Ganji and M. R. Kafai, “Demographic, health, lifestyle, and blood vitamin determinants of serum total homocysteine concentrations in the third National Health and Nutrition Examination Survey, 1988-1994,” The American Journal of Clinical Nutrition, vol. 77, no. 4, pp. 826–833, 2003. View at Google Scholar · View at Scopus
  12. WHO/FAO, “Diet, nutrition and the prevention of chronic diseases,” Tech. Rep. no. 916, Geneva, Switzerland, 2003. View at Google Scholar
  13. M. A. Martinez-Gonzalez and R. Estruch, “Mediterranean diet, antioxidants and cancer: the need for randomized trials,” European Journal of Cancer Prevention, vol. 13, no. 4, pp. 327–335, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. M. A. Martinez-González and A. Sánchez-Villegas, “The emerging role of Mediterranean diets in cardiovascular epidemiology: monounsaturated fats, olive oil, red wine or the whole pattern?” European Journal of Epidemiology, vol. 19, no. 1, pp. 9–13, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Schröder, J. Marrugat, J. Vila, M. I. Covas, and R. Elosua, “Adherence to the traditional mediterranean diet is inversely associated with body mass index and obesity in a Spanish population,” Journal of Nutrition, vol. 134, no. 12, pp. 3355–3361, 2004. View at Google Scholar · View at Scopus
  16. C. Trichopoulos and P. Lagiou, “Mediterranean diet and cardiovascular epidemiology,” European Journal of Epidemiology, vol. 19, no. 1, pp. 7–8, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Trichopoulou, C. Bamia, and D. Trichopoulos, “Mediterranean diet and survival among patients with coronary heart disease in Greece,” Archives of Internal Medicine, vol. 165, no. 8, pp. 929–935, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Trichopoulou, T. Costacou, C. Bamia, and D. Trichopoulos, “Adherence to a Mediterranean diet and survival in a Greek population,” New England Journal of Medicine, vol. 348, no. 26, pp. 2599–2608, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Sofi, F. Cesari, R. Abbate, G. F. Gensini, and A. Casini, “Adherence to Mediterranean diet and health status: meta-analysis,” British Medical Journal, vol. 337, article no. a1344, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Bogani, C. Galli, M. Villa, and F. Visioli, “Postprandial anti-inflammatory and antioxidant effects of extra virgin olive oil,” Atherosclerosis, vol. 190, no. 1, pp. 181–186, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Bartosz, “Total antioxidant capacity,” Advances in Clinical Chemistry, vol. 37, pp. 219–292, 2003. View at Google Scholar · View at Scopus
  22. M. Serafini and D. Del Rio, “Understanding the association between dietary antioxidants, redox status and disease: is the total antioxidant capacity the right tool?” Redox Report, vol. 9, no. 3, pp. 145–152, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. B. Puchau et al., “Dietary total antioxidant capacity and obesity in children and adolescents,” International Journal of Food Sciences and Nutrition, vol. 61, no. 7, pp. 713–721, 2010. View at Google Scholar
  24. B. Puchau, M. A. Zulet, A. González de Echávarri, H. H. M. Hermsdorff, and J. A. Martínez, “Dietary total antioxidant capacity is negatively associated with some metabolic syndrome features in healthy young adults,” Nutrition, vol. 26, no. 5, pp. 534–541, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Franzini et al., “Food selection based on high total antioxidant capacity improves endothelial function in a low cardiovascular risk population,” Nutrition, Metabolism, and Cardiovascular Diseases. In press.
  26. C. L. Craig, A. L. Marshall, M. Sjöström et al., “International physical activity questionnaire: 12-Country reliability and validity,” Medicine and Science in Sports and Exercise, vol. 35, no. 8, pp. 1381–1395, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. W. L. Haskell, I.-M. Lee, R. R. Pate et al., “Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association,” Medicine and Science in Sports and Exercise, vol. 39, no. 8, pp. 1423–1434, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. S. A. Kavouras, D. B. Panagiotakos, C. Pitsavos et al., “Physical activity, obesity status, and glycemic control: the ATTICA study,” Medicine and Science in Sports and Exercise, vol. 39, no. 4, pp. 606–611, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Katsouyanni, E. B. Rimm, C. Gnardellis, D. Trichopoulos, E. Polychronopoulos, and A. Trichopoulou, “Reproducibility and relative validity of an extensive semi-quantitative food frequency questionnaire using dietary records and biochemical markers among Greek schoolteachers,” International Journal of Epidemiology, vol. 26, supplement 1, pp. S118–S127, 1997. View at Google Scholar · View at Scopus
  30. W. C. Willett, F. Sacks, A. Trichopoulou et al., “Mediterranean diet pyramid: a cultural model for healthy eating,” American Journal of Clinical Nutrition, vol. 61, no. 6, pp. 1402S–1406S, 1995. View at Google Scholar · View at Scopus
  31. D. B. Panagiotakos, G. A. Milias, C. Pitsavos, and C. Stefanadis, “MedDietScore: a computer program that evaluates the adherence to the Mediterranean dietary pattern and its relation to cardiovascular disease risk,” Computer Methods and Programs in Biomedicine, vol. 83, no. 1, pp. 73–77, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. M. De Lorgeril, P. Salen, J.-L. Martin, I. Monjaud, J. Delaye, and N. Mamelle, “Mediterranean diet, traditional risk factors, and the rate of cardiovascular complications after myocardial infarction: final report of the Lyon Diet Heart Study,” Circulation, vol. 99, no. 6, pp. 779–785, 1999. View at Google Scholar · View at Scopus
  33. C. Pitsavos, D. B. Panagiotakos, C. Chrysohoou, and C. Stefanadis, “Epidemiology of cardiovascular risk factors in Greece: aims, design and baseline characteristics of the ATTICA study,” BMC Public Health, vol. 3, article no. 1, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Blomhoff, “Dietary antioxidants and cardiovascular disease,” Current Opinion in Lipidology, vol. 16, no. 1, pp. 47–54, 2005. View at Google Scholar · View at Scopus
  35. F. Leighton, A. Cuevas, V. Guasch et al., “Plasma polyphenols and antioxidants, oxidative DNA damage and endothelial function in a diet and wine intervention study in humans,” Drugs under Experimental and Clinical Research, vol. 25, no. 2-3, pp. 133–141, 1999. View at Google Scholar · View at Scopus