Table of Contents Author Guidelines Submit a Manuscript
Cardiology Research and Practice
Volume 2011, Article ID 290561, 9 pages
http://dx.doi.org/10.4061/2011/290561
Review Article

Current Trends in Implantable Left Ventricular Assist Devices

Department of Cardiac Surgery, Leipzig Heart Center, University of Leipzig, Struempellstraße 39, 04289 Leipzig, Germany

Received 24 December 2010; Revised 1 March 2011; Accepted 1 March 2011

Academic Editor: H. O. Ventura

Copyright © 2011 Jens Garbade et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. American Heart Association. 2009. Heart and Stroke facts: 2006 update, http://www.americanheart.org.
  2. Br. Heart Found. 2009, http://www.heartstats.org.
  3. E. Braunwald, D. P. Zipes, P. Libby, and R. O. Bonow, Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine, Saunders, Philadelphia, Pa, USA, 7th edition, 2005.
  4. M. S. Slaughter, J. G. Rogers, C. A. Milano et al., “Advanced heart failure treated with continuous-flow left ventricular assist device,” The New England Journal of Medicine, vol. 361, no. 23, pp. 2241–2251, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. J. G. Rogers, K. D. Aaronson, A. J. Boyle et al., “Continuous flow left ventricular assist device improves functional capacity and quality of life of advanced heart failure patients,” Journal of the American College of Cardiology, vol. 55, no. 17, pp. 1826–1834, 2010. View at Google Scholar
  6. J. K. Kirklin, D. C. Naftel, R. L. Kormos et al., “Second INTERMACS annual report: more than 1,000 primary left ventricular assist device implants,” Journal of Heart and Lung Transplantation, vol. 29, no. 1, pp. 1–10, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. F. D. Pagani, L. W. Miller, S. D. Russell et al., “Extended mechanical circulatory support with a continuous-flow rotary left ventricular assist device,” Journal of the American College of Cardiology, vol. 54, no. 4, pp. 312–321, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. F. D. Pagani, “Continuous-flow rotary left ventricular assist devices with “3rd Generation” design,” Seminars in Thoracic and Cardiovascular Surgery, vol. 20, no. 3, pp. 255–263, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. M. Morshuis, A. El-Banayosy, L. Arusoglu et al., “European experience of DuraHeart magnetically levitated centrifugal left ventricular assist system,” European Journal of Cardio-Thoracic Surgery, vol. 35, no. 6, pp. 1020–1028, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. L. W. Miller, F. D. Pagani, S. D. Russell et al., “Use of a continuous-flow device in patients awaiting heart transplantation,” The New England Journal of Medicine, vol. 357, no. 9, pp. 885–896, 2007. View at Publisher · View at Google Scholar · View at PubMed
  11. E. A. Rose, A. C. Gelijns, A. J. Moskowitz et al., “Long-term use of a left ventricular assist device for end-stage heart failure,” The New England Journal of Medicine, vol. 345, no. 20, pp. 1435–1443, 2001. View at Publisher · View at Google Scholar · View at PubMed
  12. G. M. Wieselthaler, G. O'Driscoll, P. Jansz, A. Khaghani, and M. Strueber, “Initial clinical experience with a novel left ventricular assist device with a magnetically levitated rotor in a multi-institutional trial,” Journal of Heart and Lung Transplantation, vol. 29, no. 11, pp. 1218–1225, 2010. View at Publisher · View at Google Scholar · View at PubMed
  13. R. Hetzer, T. Krabatsch, A. Stepanenko, E. Hennig, and E. V. Potapov, “Long-term biventricular support with the heartware implantable continuous flow pump,” Journal of Heart and Lung Transplantation, vol. 29, no. 7, pp. 822–824, 2010. View at Publisher · View at Google Scholar · View at PubMed
  14. K Aaronson, “Evaluation of HeartWare HVAD left ventricular assist device system for the treatment of advanced heart failure: results of the ADVANCE Bridge to transplant Trial,” Presentation at the AHA meeting, November 2010.
  15. R. D. Dowling, S. J. Park, F. D. Pagani et al., “HeartMate VE LVAS design enhancements and its impact on device reliability,” European Journal of Cardio-Thoracic Surgery, vol. 25, no. 6, pp. 958–963, 2004. View at Publisher · View at Google Scholar · View at PubMed
  16. M. P. Siegenthaler, O. H. Frazier, F. Beyersdorf et al., “Mechanical reliability of the Jarvik 2000 Heart,” Annals of Thoracic Surgery, vol. 81, no. 5, pp. 1752–1759, 2006. View at Publisher · View at Google Scholar · View at PubMed
  17. O. H. Frazier, T. J. Myers, S. Westaby et al., “Use of the Jarvik 2000 left ventricular assist system as a bridge to heart transplantation or as destination therapy for patients with chronic heart failure,” Annals of Surgery, vol. 237, no. 5, pp. 631–637, 2003. View at Publisher · View at Google Scholar
  18. C. Nojiri, T. Kijima, J. Maekawa et al., “Development status of terumo implantable left ventricular assist system,” Artificial Organs, vol. 25, no. 5, pp. 411–413, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Lahpor, A. Khaghani, R. Hetzer et al., “European results with a continuous-flow ventricular assist device for advanced heart-failure patients,” European Journal of Cardio-Thoracic Surgery, vol. 37, no. 2, pp. 357–361, 2010. View at Publisher · View at Google Scholar · View at PubMed
  20. M. Strüber, G. O'Drscoli, P. Jansz et al., “Multicenter evaluation of an intrapericardial left ventricular assist system,” Journal of the American College of Cardiology, vol. 57, no. 12, pp. 1375–1382, 2011. View at Publisher · View at Google Scholar · View at PubMed
  21. M. Strüber, K. Sander, J. Lahpor et al., “HeartMate II left ventricular assist device; early European experience,” European Journal of Cardio-Thoracic Surgery, vol. 34, no. 2, pp. 289–294, 2008. View at Publisher · View at Google Scholar · View at PubMed
  22. S. Haj-Yahia, E. J. Birks, P. Rogers et al., “Midterm experience with the Jarvik 2000 axial flow left ventricular assist device,” Journal of Thoracic and Cardiovascular Surgery, vol. 134, no. 1, pp. 199–203, 2007. View at Publisher · View at Google Scholar · View at PubMed
  23. O. H. Frazier, E. A. Rose, P. McCarthy et al., “Improved mortality and rehabilitation of transplant candidates treated with a long-term implantable left ventricular assist system,” Annals of Surgery, vol. 222, no. 3, pp. 327–338, 1995. View at Google Scholar
  24. O. H. Frazier, E. A. Rose, M. C. Dz et al., “Multicenter clinical evaluation of the HeartMate vented electric left ventricular assist system in patients awaiting heart transplantation,” Journal of Thoracic and Cardiovascular Surgery, vol. 122, no. 6, pp. 1186–1195, 2001. View at Publisher · View at Google Scholar · View at PubMed
  25. V. L. Poirier, “Worldwide experience with the TCI HeartMate system: issues and future perspective,” The Thoracic and Cardiovascular Surgeon, vol. 47, pp. 316–320, 1999. View at Google Scholar
  26. B. C. Sun, K. A. Catanese, T. B. Spanier et al., “100 Long-term implantable left ventricular assist devices: the columbia presbyterian interim experience,” Annals of Thoracic Surgery, vol. 68, no. 2, pp. 688–694, 1999. View at Publisher · View at Google Scholar
  27. P. M. McCarthy, N. O. Smedira, R. L. Vargo et al., “One hundred patients with the heartmate left ventricular assist device: evolving concepts and technology,” Journal of Thoracic and Cardiovascular Surgery, vol. 115, no. 4, pp. 904–912, 1998. View at Publisher · View at Google Scholar
  28. W. L. Holman, R. L. Kormos, D. C. Naftel et al., “Predictors of death and transplant in patients With a mechanical circulatory support device: a multi-institutional study,” Journal of Heart and Lung Transplantation, vol. 28, no. 1, pp. 44–50, 2009. View at Publisher · View at Google Scholar · View at PubMed
  29. K. Nawata, T. Nishimura, and S. Kyo, “Outcomes of midterm circulatory support by left ventricular assist device implantation with descending aortic anastomosis,” Journal of Artificial Organs, vol. 13, no. 4, pp. 197–201, 2011. View at Publisher · View at Google Scholar · View at PubMed
  30. B. P. Griffith, R. L. Kormos, H. S. Borovetz et al., “HeartMate II left ventricular assist system: from concept to first clinical use,” Annals of Thoracic Surgery, vol. 71, no. 3, supplement 1, pp. S116–S120, 2001. View at Publisher · View at Google Scholar
  31. A. J. Boyle, S. D. Russell, J. J. Teuteberg et al., “Low thromboembolism and pump thrombosis with the heartMate II left ventricular assist device: analysis of outpatient anti-coagulation,” Journal of Heart and Lung Transplantation, vol. 28, no. 9, pp. 881–887, 2009. View at Publisher · View at Google Scholar · View at PubMed
  32. S. H. Reichenbach, K. B. Masterson, K. C. Butler, and D. J. Farrar, “Negligible bearing wear in explanted heartMate II LVADs following clinical support for up to four years,” in Proceedings of the Annual Meeting of the International Society of Rotary Blood Pumps, Berlin, Germany, November 2010.
  33. H. Hoshi, T. Shinshi, and S. Takatani, “Third-generation blood pumps with mechanical noncontact magnetic bearings,” Artificial Organs, vol. 30, no. 5, pp. 324–338, 2006. View at Publisher · View at Google Scholar · View at PubMed
  34. D. J. Farrar, K. Bourque, C. P. Dague, C. J. Cotter, and V. L. Poirier, “Design features, developmental status, and experimental results with the heartmate III centrifugal left ventricular assist system with a magnetically levitated rotor,” ASAIO Journal, vol. 53, no. 3, pp. 310–315, 2007. View at Publisher · View at Google Scholar · View at PubMed
  35. G. B. Bearnson, G. B. Jacobs, J. Kirk, P. S. Khanwilkar, K. E. Nelson, and J. W. Long, “HeartQuest ventricular assist device magnetically levitated centrifugal blood pump,” Artificial Organs, vol. 30, no. 5, pp. 339–346, 2006. View at Publisher · View at Google Scholar · View at PubMed
  36. C. Schmid, M. Jurmann, D. Birnbaum et al., “Influence of inflow cannula length in axial-flow pumps on neurologic adverse event rate: results from a multi-center analysis,” Journal of Heart and Lung Transplantation, vol. 27, no. 3, pp. 253–260, 2008. View at Publisher · View at Google Scholar · View at PubMed
  37. J. A. LaRose, D. Tamez, M. Ashenuga, and C. Reyes, “Design concepts and principle of operation of the heartware ventricular assist system,” ASAIO Journal, vol. 56, no. 4, pp. 285–289, 2010. View at Publisher · View at Google Scholar · View at PubMed
  38. M. Strueber, A. L. Meyer, D. Malehsa, and A. Haverich, “Successful use of the HeartWare HVAD rotary blood pump for biventricular support,” Journal of Thoracic and Cardiovascular Surgery, 2010. View at Publisher · View at Google Scholar · View at PubMed
  39. R. C. Starling, Y Naka, and A. J. Boyle, “Results of the post-FDA-approval study with a continuous flow left ventricular assist device as a bridge to heart transplantation: a prospective study using the INTERMACS registry. Presented at heart failure society of America,” Journal of the American College of Cardiology. In press.
  40. D. Esmore, D. Kaye, P. Spratt et al., “A prospective, multicenter trial of the ventrAssist left ventricular assist device for bridge to transplant: safety and efficacy,” Journal of Heart and Lung Transplantation, vol. 27, no. 6, pp. 579–588, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. M. C. Oz, D. J. Goldstein, P. Pepino et al., “Screening scale predicts patients successfully receiving long-term implantable left ventricular assist devices,” Circulation, vol. 92, no. 9, pp. II169–II173, 1995. View at Google Scholar
  42. V. Rao, M. C. Oz, M. A. Flannery, K. A. Catanese, M. Argenziano, and Y. Naka, “Revised screening scale to predict survival after insertion of a left ventricular assist device,” Journal of Thoracic and Cardiovascular Surgery, vol. 125, no. 4, pp. 855–862, 2003. View at Publisher · View at Google Scholar · View at PubMed
  43. W. C. Levy, D. Mozaffarian, D. T. Linker, D. J. Farrar, and L. W. Miller, “Can the seattle heart failure model be used to risk-stratify heart failure patients for potential left ventricular assist device therapy?” Journal of Heart and Lung Transplantation, vol. 28, no. 3, pp. 231–236, 2009. View at Publisher · View at Google Scholar · View at PubMed
  44. D. Mozaffarian, S. D. Anker, I. Anand et al., “Prediction of mode of death in heart failure: The Seattle Heart Failure Model,” Circulation, vol. 116, no. 4, pp. 392–398, 2007. View at Publisher · View at Google Scholar · View at PubMed
  45. L. W. Miller, “Patient selection for the use of ventricular assist devices as a bridge to transplantation,” Annals of Thoracic Surgery, vol. 75, no. 6, supplement 1, pp. S66–S71, 2003. View at Publisher · View at Google Scholar
  46. M. C. Deng, M. Weyand, D. Hammel et al., “Selection and management of ventricular assist device patients: the muenster experience,” Journal of Heart and Lung Transplantation, vol. 19, no. 8, pp. S77–S82, 2000. View at Google Scholar