Table of Contents Author Guidelines Submit a Manuscript
Cardiology Research and Practice
Volume 2011 (2011), Article ID 317659, 9 pages
http://dx.doi.org/10.4061/2011/317659
Review Article

Radiation-Induced Heart Disease: A Clinical Update

Department of Cardiology, University of Texas MD Anderson Cancer Center, Unit 1451, Houston, TX 77030, USA

Received 14 October 2010; Accepted 15 December 2010

Academic Editor: Jean-Bernard Durand

Copyright © 2011 Syed Wamique Yusuf et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. Fuster and J. Voûte, “MDGs: chronic diseases are not on the agenda,” The Lancet, vol. 366, no. 9496, pp. 1512–1514, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. W. A. Bleyer, “The impact of childhood cancer on the United States and the world,” Ca: A Cancer Journal for Clinicians, vol. 40, no. 6, pp. 355–367, 1990. View at Google Scholar · View at Scopus
  3. B. M. P. Aleman, A. W. van den Belt-Dusebout, W. J. Klokman, M. B. Van't Veer, H. Bartelink, and F. E. van Leeuwen, “Long-term cause-specific mortality of patients treated for Hodgkin's disease,” Journal of Clinical Oncology, vol. 21, no. 18, pp. 3431–3439, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. R. T. Hoppe, “Hodgkin's disease: complications of therapy and excess mortality,” Annals of Oncology, vol. 8, no. 1, pp. S115–S118, 1997. View at Google Scholar · View at Scopus
  5. A. K. Ng, M. P. Bernardo, E. Weller et al., “Long-term survival and competing causes of death in patients with early-stage Hodgkin's disease treated at age 50 or younger,” Journal of Clinical Oncology, vol. 20, no. 8, pp. 2101–2108, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. A. J. Swerdlow, C. D. Higgins, P. Smith et al., “Myocardial infarction mortality risk after treatment for hodgkin disease: a collaborative British cohort study,” Journal of the National Cancer Institute, vol. 99, no. 3, pp. 206–214, 2007. View at Publisher · View at Google Scholar · View at PubMed
  7. J. F. Boivin, G. B. Hutchison, J. H. Lubin, and P. Mauch, “Coronary artery disease mortality in patients treated for Hodgkin's disease,” Cancer, vol. 69, no. 5, pp. 1241–1247, 1992. View at Google Scholar · View at Scopus
  8. S. L. Hancock, M. A. Tucker, and R. T. Hoppe, “Factors affecting late mortality from heart disease after treatment of Hodgkin's disease,” Journal of the American Medical Association, vol. 270, no. 16, pp. 1949–1955, 1993. View at Publisher · View at Google Scholar · View at Scopus
  9. P. A. Heidenreich, I. Schnittger, H. W. Strauss et al., “Screening for coronary artery disease after mediastinal irradiation for Hodgkin's disease,” Journal of Clinical Oncology, vol. 25, no. 1, pp. 43–49, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. J. Cuzick, H. Stewart, L. Rutqvist et al., “Cause-specific mortality in long-term survivors of breast cancer who participated in trials of radiotherapy,” Journal of Clinical Oncology, vol. 12, no. 3, pp. 447–453, 1994. View at Google Scholar · View at Scopus
  11. Y. Shimizu, D. A. Pierce, D. L. Preston, and K. Mabuchi, “Studies of the mortality of atomic bomb survivors. Report 12, part II. Noncancer mortality: 1950–1990,” Radiation Research, vol. 152, no. 4, pp. 374–389, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. M. J. Hooning, A. Botma, B. M. P. Aleman et al., “Long-term risk of cardiovascular disease in 10-year survivors of breast cancer,” Journal of the National Cancer Institute, vol. 99, no. 5, pp. 365–375, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. J. P. Veinot and W. D. Edwards, “Pathology of radiation-induced heart disease: a surgical and autopsy study of 27 cases,” Human Pathology, vol. 27, no. 8, pp. 766–773, 1996. View at Publisher · View at Google Scholar · View at Scopus
  14. F. C. Brosius, B. F. Waller, and W. C. Roberts, “Radiation heart disease. Analysis of 16 young (aged 15 to 33 years) necropsy patients who received over 3,500 rads to the heart,” American Journal of Medicine, vol. 70, no. 3, pp. 519–530, 1981. View at Google Scholar · View at Scopus
  15. A. W. T. Konings, M. J. Hardonk, R. A. Wieringa andLamberts, and H. B. Lamberts, “Initial events in radiation induced atheromatosis I. Activation of lysosomal enzymes,” Strahlentherapie, vol. 150, no. 4, pp. 444–448, 1975. View at Google Scholar · View at Scopus
  16. A. W. T. Konings, C. T. Smit Sibinga, M. W. Aarnoudse, S. S. de Wit, and H. B. Lamberts, “Initial events in radiation-induced atheromatosis. II. Damage to intimal cells,” Strahlentherapie, vol. 154, no. 11, pp. 795–800, 1978. View at Google Scholar · View at Scopus
  17. F. Paris, Z. Fuks, A. Kang et al., “Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice,” Science, vol. 293, no. 5528, pp. 293–297, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. G. D. Amromin, H. L. Gildenhorn, R. D. Solomon, and B. B. Nadkarni, “The synergism of X-irradiation and cholesterol-fat feeding on the development of coronary artery lesions,” Journal of Atherosclerosis Research, vol. 4, pp. 325–334, 1964. View at Google Scholar
  19. R. Ross, “Cell biology of atherosclerosis,” Annual Review of Physiology, vol. 57, pp. 791–804, 1995. View at Google Scholar · View at Scopus
  20. G. K. Hansson, “Inflammation, atherosclerosis, and coronary artery disease,” The New England Journal of Medicine, vol. 352, no. 16, pp. 1685–1626, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. F. A. Stewart, S. Heeneman, J. Te Poele et al., “Ionizing radiation accelerates the development of atherosclerotic lesions in ApoE mice and predisposes to an inflammatory plaque phenotype prone to hemorrhage,” American Journal of Pathology, vol. 168, no. 2, pp. 649–658, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. D. L. Tribble, M. H. Barcellos-Hoff, B. M. Chu, and E. L. Gong, “Ionizing radiation accelerates aortic lesion formation in fat-fed mice via SOD-inhibitable processes,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 19, no. 6, pp. 1387–1392, 1999. View at Google Scholar · View at Scopus
  23. O. A. Hatoum, M. F. Otterson, D. Kopelman et al., “Radiation induces endothelial dysfunction in murine intestinal arterioles via enhanced production of reactive oxygen species,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 2, pp. 287–294, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. N. L. Weintraub, W. K. Jones, and D. Manka, “Understanding radiation-induced vascular disease,” Journal of the American College of Cardiology, vol. 55, no. 12, pp. 1237–1239, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. S. R. Basavaraju and C. E. Easterly, “Pathophysiological effects of radiation on atherosclerosis development and progression, and the incidence of cardiovascular complications,” Medical Physics, vol. 29, no. 10, pp. 2391–2403, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Hayashi, Y. Kusunoki, M. Hakoda et al., “Radiation dose-dependent increases in inflammatory response markers in A-bomb survivors,” International Journal of Radiation Biology, vol. 79, no. 2, pp. 129–136, 2003. View at Google Scholar · View at Scopus
  27. T. Hayashi, Y. Morishita, Y. Kubo et al., “Long-term effects of radiation dose on inflammatory markers in atomic bomb survivors,” American Journal of Medicine, vol. 118, no. 1, pp. 83–86, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. M. P. Little, A. Gola, and I. Tzoulaki, “A model of cardiovascular disease giving a plausible mechanism for the effect of fractionated low-dose ionizing radiation exposure,” PLoS Computational Biology, vol. 5, no. 10, Article ID e1000539, 2009. View at Publisher · View at Google Scholar · View at PubMed
  29. M. Boerma, C. Zurcher, I. Esveldt, C. I. Schutte-Bart, and J. Wondergem, “Histopathology of ventricles, coronary arteries and mast cell accumulation in transverse and longitudinal sections of the rat heart after irradiation,” Oncology Reports, vol. 12, no. 2, pp. 213–219, 2004. View at Google Scholar · View at Scopus
  30. Q. Zhou, Y. Zhao, P. Li, X. Bai, and C. Ruan, “Thrombomodulin as a marker of radiation-induced endothelial cell injury,” Radiation Research, vol. 131, no. 3, pp. 285–289, 1992. View at Publisher · View at Google Scholar · View at Scopus
  31. M. M. Dunn, E. A. Drab, and D. B. Rubin, “Effects of irradiation on endothelial cell-polymorphonuclear leukocyte interactions,” Journal of Applied Physiology, vol. 60, no. 6, pp. 1932–1937, 1986. View at Google Scholar · View at Scopus
  32. J. A. Beckman, A. Thakore, B. H. Kalinowski, J. R. Harris, and M. A. Creager, “Radiation therapy impairs endothelium-dependent vasodilation in humans,” Journal of the American College of Cardiology, vol. 37, no. 3, pp. 761–765, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. T. Sugihara, Y. Hattori, Y. Yamamoto et al., “Preferential impairment of nitric oxide-mediated endothelium-dependent relaxation in human cervical arteries after irradiation,” Circulation, vol. 100, no. 6, pp. 635–641, 1999. View at Google Scholar · View at Scopus
  34. F. Orzan, A. Brusca, M. R. Conte, P. Presbitero, and M. C. Figliomeni, “Severe coronary artery disease after radiation therapy of the chest and mediastinum: clinical presentation and treatment,” British Heart Journal, vol. 69, no. 6, pp. 496–500, 1993. View at Google Scholar
  35. R. Virmani, A. Farb, A. J. Carter, and R. M. Jones, “Pathology of radiation-induced coronary artery disease in human and pig,” Cardiovascular Radiation Medicine, vol. 1, no. 1, pp. 98–101, 1999. View at Publisher · View at Google Scholar · View at Scopus
  36. R. L. Summers, “Prevalence of atypical chest pain descriptions in a population from the southern United States,” American Journal of the Medical Sciences, vol. 318, no. 3, pp. 142–145, 1999. View at Google Scholar
  37. S. E. Lipshultz and S. E. Sallan, “Cardiovascular abnormalities in long-term survivors of childhood malignancy,” Journal of Clinical Oncology, vol. 11, no. 7, pp. 1199–1203, 1993. View at Google Scholar · View at Scopus
  38. K. P. Letsas, P. Korantzopoulos, D. Evangelou, L. K. Pappas, and F. Kardaras, “Acute myocardial infarction with normal coronary arteries in a patient with Hodgkin's disease: a late complication of irradiation and chemotherapy,” Texas Heart Institute Journal, vol. 33, no. 4, pp. 512–514, 2006. View at Google Scholar · View at Scopus
  39. P. H. Hardenbergh, M. T. Munley, G. C. Bentel et al., “Cardiac perfusion changes in patients treated for breast cancer with radiation therapy and doxorubicin: preliminary results,” International Journal of Radiation Oncology Biology Physics, vol. 49, no. 4, pp. 1023–1028, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. P. Hardenbergh, M. Munley, C. Hu et al., “Doxorubicin-based chemotherapy and radiation increase cardiac perfusion changes in patients treated for left-sided breast cancer,” Breast Cancer Research and Treatment, vol. 69, no. 3, p. 231, 2001. View at Google Scholar · View at Scopus
  41. L. B. Marks, X. Yu, R. G. Prosnitz et al., “The incidence and functional consequences of RT-associated cardiac perfusion defects,” International Journal of Radiation Oncology Biology Physics, vol. 63, no. 1, pp. 214–223, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. X. Yu, R. R. Prosnitz, S. Zhou et al., “Symptomatic cardiac events following radiation therapy for left-sided breast cancer: possible association with radiation therapy-induced changes in regional perfusion,” Clinical Breast Cancer, vol. 4, no. 3, pp. 193–197, 2003. View at Google Scholar · View at Scopus
  43. I. W. Gayed, H. H. Liu, S. W. Yusuf et al., “The prevalence of myocardial ischemia after concurrent chemoradiation therapy as detected by gated myocardial perfusion imaging in patients with esophageal cancer,” Journal of Nuclear Medicine, vol. 47, no. 11, pp. 1756–1762, 2006. View at Google Scholar · View at Scopus
  44. I. Gayed, S. Gohar, Z. Liao, M. McAleer, R. Bassett, and S. W. Yusuf, “The clinical implications of myocardial perfusion abnormalities in patients with esophageal or lung cancer after chemoradiation therapy,” International Journal of Cardiovascular Imaging, vol. 25, no. 5, pp. 487–495, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. J. L. Anderson, C. D. Adams, E. M. Antman et al., “ACC/AHA 2007 guidelines for the management of patients with unstable angina/non ST-elevation myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 2002 Guidelines for the Management of Patients with Unstable Angina/Non ST-Elevation Myocardial Infarction): developed in collaboration with the American College of Emergency Physicians, the Society for Cardiovascular Angiography and Interventions, and the Society of Thoracic Surgeons: endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation and the Society for Academic Emergency Medicine,” Circulation, vol. 116, no. 7, pp. e148–e304, 2007. View at Publisher · View at Google Scholar · View at PubMed
  46. F. Bilora, F. Pietrogrande, F. Petrobelli, G. Polato, F. Pomerri, and P. C. Muzzio, “Is radiation a risk factor for atherosclerosis? An echo-color Doppler study on Hodgkin and non-Hodgkin patients,” Tumori, vol. 92, no. 4, pp. 295–298, 2006. View at Google Scholar · View at Scopus
  47. F. Bilora, F. Pietrogrande, E. Campagnolo et al., “Are Hodgkin and non-Hodgkin patients at a greater risk of atherosclerosis? A follow-up of 3 years,” European Journal of Cancer Care, vol. 19, no. 3, pp. 417–419, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. S. W. K. Cheng, A. C. W. Ting, L. K. Lam, and W. I. Wei, “Carotid stenosis after radio therapy for nasopharyngeal carcinoma,” Archives of Otolaryngology—Head and Neck Surgery, vol. 126, no. 4, pp. 517–521, 2000. View at Google Scholar · View at Scopus
  49. W. W. Lam, S. F. Leung, N. M. So et al., “Incidence of carotid stenosis in nasopharyngeal carcinoma patients after radiotherapy,” Cancer, vol. 92, no. 9, pp. 2357–2363, 2001. View at Publisher · View at Google Scholar · View at Scopus
  50. H. P. Rodemann, “Cellular basis of radiation-induced fibrosis,” Radiotherapy and Oncology, vol. 35, no. 2, pp. 83–90, 1995. View at Publisher · View at Google Scholar · View at Scopus
  51. J. R. Stewart and L. F. Fajardo, “Radiation-induced heart disease: an update,” Progress in Cardiovascular Diseases, vol. 27, no. 3, pp. 173–194, 1984. View at Google Scholar · View at Scopus
  52. D. L. Morton, D. L. Glancy, W. L. Joseph, and P. C. Adkins, “Management of patients with radiation induced pericarditis with effusion: a note on the development of aortic regurgitation in two of them,” Chest, vol. 64, no. 3, pp. 291–297, 1973. View at Google Scholar · View at Scopus
  53. M. M. Applefeld, J. F. Cole, and S. H. Pollock, “The late appearance of chronic pericardial disease in patients treated by radiotherapy for Hodgkin's disease,” Annals of Internal Medicine, vol. 94, no. 3, pp. 338–341, 1981. View at Google Scholar · View at Scopus
  54. L. H. Ling, J. K. Oh, H. V. Schaff et al., “Constrictive pericarditis in the modern era: evolving clinical spectrum and impact on outcome after pericardiectomy,” Circulation, vol. 100, no. 13, pp. 1380–1386, 1999. View at Google Scholar · View at Scopus
  55. D. A. Mulrooney, M. W. Yeazel, T. Kawashima et al., “Cardiac outcomes in a cohort of adult survivors of childhood and adolescent cancer: retrospective analysis of the Childhood Cancer Survivor Study cohort,” BMJ, vol. 339, p. b4606, 2009. View at Google Scholar · View at Scopus
  56. K. A. Tolba and E. N. Deliargyris, “Cardiotoxicity of cancer therapy,” Cancer Investigation, vol. 17, no. 6, pp. 408–422, 1999. View at Google Scholar · View at Scopus
  57. M. Chello, P. Mastroroberto, R. Romano, S. Zofrea, I. Bevacqua, and A. R. Marchese, “Changes in the proportion of types I and III collagen in the left ventricular wall of patients with post-irradiative pericarditis,” Cardiovascular Surgery, vol. 4, no. 2, pp. 222–226, 1996. View at Publisher · View at Google Scholar · View at Scopus
  58. R. J. Burns, B. Z. Bar Shlomo, and M. N. Druck, “Detection of radiation cardiomyopathy by gated radionuclide angiography,” American Journal of Medicine, vol. 74, no. 2, pp. 297–302, 1983. View at Google Scholar
  59. L. S. Constine, R. G. Schwartz, D. E. Savage, V. King, and A. Muhs, “Cardiac function, perfusion, and morbidity in irradiated long-term survivors of Hodgkin's disease,” International Journal of Radiation Oncology Biology Physics, vol. 39, no. 4, pp. 897–906, 1997. View at Publisher · View at Google Scholar · View at Scopus
  60. G. Gyenes, T. Fornander, P. Carlens, U. Glas, and L. E. Rutqvist, “Myocardial damage in breast cancer patients treated with adjuvant radiotherapy: a prospective study,” International Journal of Radiation Oncology Biology Physics, vol. 36, no. 4, pp. 899–905, 1996. View at Publisher · View at Google Scholar · View at Scopus
  61. M. J. Adams, P. H. Hardenbergh, L. S. Constine, and S. E. Lipshultz, “Radiation-associated cardiovascular disease,” Critical Reviews in Oncology/Hematology, vol. 45, no. 1, pp. 55–75, 2003. View at Publisher · View at Google Scholar · View at Scopus
  62. S. A. Hunt, W. T. Abraham, M. H. Chin et al., “2009 Focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults. A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines Developed in Collaboration with the International Society for Heart and Lung Transplantation,” Journal of the American College of Cardiology, vol. 53, no. 15, pp. e1–e90, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  63. R. Yarom, I. S. Harper, S. Wynchank et al., “Effect of captopril on changes in rats' hearts induced by long-term irradiation,” Radiation Research, vol. 133, no. 2, pp. 187–197, 1993. View at Google Scholar · View at Scopus
  64. A. Tamura, Y. Takahara, K. Mogi, and M. Katsumata, “Radiation-induced valvular disease is the logical consequence of irradiation,” General Thoracic and Cardiovascular Surgery, vol. 55, no. 2, pp. 53–56, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  65. R. G. Carlson, W. R. Mayfield, S. Normann, and J. A. Alexander, “Radiation-associated valvular disease,” Chest, vol. 99, no. 3, pp. 538–545, 1991. View at Google Scholar · View at Scopus
  66. M. D. Brand, C. A. Abadi, G. P. Aurigemma, H. L. Dauerman, and T. E. Meyer, “Radiation-associated valvular heart disease in Hodgkin's disease is associated with characteristic thickening and fibrosis of the aortic-mitral curtain,” Journal of Heart Valve Disease, vol. 10, no. 5, pp. 681–685, 2001. View at Google Scholar · View at Scopus
  67. N. M. Katz, A. W. Hall, and M. D. Cerqueira, “Radiation induced valvulitis with late leaflet rupture,” Heart, vol. 86, no. 6, p. E20, 2001. View at Google Scholar · View at Scopus
  68. K. J. Totterman, E. Pesonen, and P. Siltanen, “Radiation-related chronic heart disease,” Chest, vol. 83, no. 6, pp. 875–878, 1983. View at Google Scholar · View at Scopus
  69. M. S. Slama, D. Le Guludec, C. Sebag et al., “Complete atrioventricular block following mediastinal irradiation: a report of six cases,” Pacing and Clinical Electrophysiology, vol. 14, no. 7, pp. 1112–1118, 1991. View at Google Scholar · View at Scopus
  70. L. La Vecchia, “Physiologic dual chamber pacing in radiation-induced atrioventricular block,” Chest, vol. 110, no. 2, pp. 580–581, 1996. View at Google Scholar · View at Scopus
  71. S. I. Cohen, S. Bharati, J. Glass, and M. Lev, “Radiotherapy as a cause of complete atrioventricular block in Hodgkin's disease. An electrophysiological-pathological correlation,” Archives of Internal Medicine, vol. 141, no. 5, pp. 676–679, 1981. View at Publisher · View at Google Scholar · View at Scopus
  72. T. Nakao, H. Kanaya, M. Namura et al., “Complete atrioventricular block following radiation therapy for malignant thymoma,” Japanese Journal of Medicine, vol. 29, no. 1, pp. 104–110, 1990. View at Google Scholar · View at Scopus
  73. L. Hughes-Davies, D. B. Sacks, J. Rescigno, S. Howard, and J. Harris, “Serum cardiac troponin T levels during treatment of early-stage breast cancer,” Journal of Clinical Oncology, vol. 13, no. 10, pp. 2582–2584, 1995. View at Google Scholar · View at Scopus
  74. K. R. Kozak, T. S. Hong, P. M. Sluss et al., “Cardiac blood biomarkers in patients receiving thoracic (chemo)radiation,” Lung Cancer, vol. 62, no. 3, pp. 351–355, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  75. U. Nellessen, M. Zingel, H. Hecker, J. Bahnsen, and D. Borschke, “Effects of radiation therapy on myocardial cell integrity and pump function: which role for cardiac biomarkers?” Chemotherapy, vol. 56, no. 2, pp. 147–152, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  76. J. Rademaker, H. Schöder, N. S. Ariaratnam et al., “Coronary artery disease after radiation therapy for Hodgkin's lymphoma: coronary CT angiography findings and calcium scores in nine asymptomatic patients,” American Journal of Roentgenology, vol. 191, no. 1, pp. 32–37, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus