Table of Contents Author Guidelines Submit a Manuscript
Cardiology Research and Practice
Volume 2011 (2011), Article ID 798658, 6 pages
http://dx.doi.org/10.4061/2011/798658
Research Article

Progression of Left Ventricular Dysfunction and Remodelling under Optimal Medical Therapy in CHF Patients: Role of Individual Genetic Background

Division of Cardiology, Department of Biomedical and Surgical Sciences, University of Verona, 37129 Verona, Italy

Received 25 October 2010; Accepted 25 November 2010

Academic Editor: Javed Butler

Copyright © 2011 Marzia Rigolli et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. A. Hunt, W. T. Abraham, and W. T. Abraham, “2009 focused update incorporated into the ACC/AHA 2005 guidelines for the diagnosis and management of heart failure in adults: a report of the Aamerican College of Cardiology Foundation/American Heart Association Task Force on practice guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation,” Circulation, vol. 119, no. 14, pp. e391–e479, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. D. Lloyd-Jones, R. J. Adams, and R. J. Adams, “Executive summary: heart disease and stroke statistics—2010 update: a report from the american heart association,” Circulation, vol. 121, no. 7, pp. e46–e215, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. M. M. Givertz, “Underlying causes and survival in patients with heart failure,” New England Journal of Medicine, vol. 342, no. 15, pp. 1120–1122, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. J. N. Cohn, “Structural basis for heart failure: ventricular remodeling and its pharmacological inhibition,” Circulation, vol. 91, no. 10, pp. 2504–2507, 1995. View at Google Scholar · View at Scopus
  5. M. A. Pfeffer, E. Braunwald, and E. Braunwald, “Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction—results of the survival and ventricular enlargement trial,” New England Journal of Medicine, vol. 327, no. 10, pp. 669–677, 1992. View at Google Scholar · View at Scopus
  6. S. A. Hall, C. G. Cigarroa, L. Marcoux, R. C. Risser, P. A. Grayburn, and E. J. Eichhorn, “Time course of improvement in left ventricular function, mass and geometry in patients with congestive heart failure treated with beta-adrenergic blockade,” Journal of the American College of Cardiology, vol. 25, no. 5, pp. 1154–1161, 1995. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Cicoira, L. Zanolla, and L. Zanolla, “Long-term, dose-dependent effects of spironolactone on left ventricular function and exercise tolerance in patients with chronic heart failure,” Journal of the American College of Cardiology, vol. 40, no. 2, pp. 304–310, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Pfeufer, K. J. Osterziel, and K. J. Osterziel, “Angiotensin-converting enzyme and heart chymase gene polymorphisms in hypertrophic cardiomyopathy,” American Journal of Cardiology, vol. 78, no. 3, pp. 362–364, 1996. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Higaki, S. Baba, and S. Baba, “Deletion allele of angiotensin-converting enzyme gene increases risk of essential hypertension in Japanese men: the Suita study,” Circulation, vol. 101, no. 17, pp. 2060–2065, 2000. View at Google Scholar · View at Scopus
  10. P. S. Walsh, D. A. Metzger, and R. Higuchi, “Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material,” BioTechniques, vol. 10, no. 4, pp. 506–513, 1991. View at Google Scholar · View at Scopus
  11. W. J. Remme, G. Riegger, and G. Riegger, “The benefits of early combination treatment of carvedilol and an ACE-inhibitor in mild heart failure and left ventricular systolic dysfunction. The carvedilol and ACE-inhibitor remodelling mild heart failure evaluation trial (CARMEN),” Cardiovascular Drugs and Therapy, vol. 18, no. 1, pp. 57–66, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. R. S. Khattar, R. Senior, P. Soman, R. van der Does, and A. Lahiri, “Regression of left ventricular remodeling in chronic heart failure: comparative and combined effects of captopril and carvedilol,” American Heart Journal, vol. 142, no. 4, pp. 704–713, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. L. Tiret, B. Rigat, S. Visvikis, C. Breda, P. Corvol, F. Cambien, and F. Soubrier, “Evidence, from combined segregation and linkage analysis, that a variant of the angiotensin I-converting enzyme (ACE) gene controls plasma ACE levels,” American Journal of Human Genetics, vol. 51, no. 1, pp. 197–205, 1992. View at Google Scholar · View at Scopus
  14. A. H. J. Danser, F. H. M. Derkx, H. W. Hense, X. Jeunemaître, G. A. J. Riegger, and H. Schunkert, “Angiotensinogen (M235T) and angiotensin-converting enzyme (I/D) polymorphisms in association with plasma renin and prorenin levels,” Journal of Hypertension, vol. 16, no. 12, pp. 1879–1883, 1998. View at Publisher · View at Google Scholar · View at Scopus
  15. B. R. Winkelmann, M. Nauck, and M. Nauck, “Deletion polymorphism of the angiotensin I-converting enzyme gene is associated with increased plasma angiotensin-converting enzyme activity but not with increased risk for myocardial infarction and coronary artery disease,” Annals of Internal Medicine, vol. 125, no. 1, pp. 19–25, 1996. View at Google Scholar · View at Scopus
  16. M. V. Raynolds, M. R. Bristow, and M. R. Bristow, “Angiotensin-converting enzyme DD genotype in patients with ischaemic or idiopathic dilated cardiomyopathy,” Lancet, vol. 342, no. 8879, pp. 1073–1075, 1993. View at Publisher · View at Google Scholar · View at Scopus
  17. B. Andersson and C. Sylvén, “The DD genotype of the angiotensin-converting enzyme gene is associated with increased mortality in idiopathic heart failure,” Journal of the American College of Cardiology, vol. 28, no. 1, pp. 162–167, 1996. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Cicoira, L. Zanolla, and L. Zanolla, “Failure of aldosterone suppression despite angiotensin-converting enzyme (ACE) inhibitor administration in chronic heart failure is associated with ACE DD genotype,” Journal of the American College of Cardiology, vol. 37, no. 7, pp. 1808–1812, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Cicoira, A. Rossi, and A. Rossi, “Effects of ACE gene insertion/deletion polymorphism on response to spironolactone in patients with chronic heart failure,” American Journal of Medicine, vol. 116, no. 10, pp. 657–661, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. D. M. McNamara, R. Holubkov, and R. Holubkov, “Pharmacogenetic interactions between angiotensin-converting enzyme inhibitor therapy and the angiotensin-converting enzyme deletion polymorphism in patients with congestive heart failure,” Journal of the American College of Cardiology, vol. 44, no. 10, pp. 2019–2026, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. M. R. Bristow, “Why does the myocardium fail? Insights from basic science,” Lancet, vol. 352, no. 1, pp. 8–14, 1998. View at Google Scholar · View at Scopus
  22. D. A. Mason, J. D. Moore, S. A. Green, and S. B. Liggett, “A gain-of-function polymorphism in a G-protein coupling domain of the human β1-adrenergic receptor,” Journal of Biological Chemistry, vol. 274, no. 18, pp. 12670–12674, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. K. M. Small, L. E. Wagoner, A. M. Levin, S. L. R. Kardia, and S. B. Liggett, “Synergistic polymorphisms of β- and α-adrenergic receptors and the risk of congestive heart failure,” New England Journal of Medicine, vol. 347, no. 15, pp. 1135–1142, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. H. L. White, R. A. de Boer, and R. A. de Boer, “An evaluation of the beta-1 adrenergic receptor Arg389Gly polymorphism in individuals with heart failure: a MERIT-HF sub-study,” European Journal of Heart Failure, vol. 5, no. 4, pp. 463–468, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. A. J. Sehnert, S. E. Daniels, and S. E. Daniels, “Lack of association between adrenergic receptor genotypes and survival in heart failure patients treated with carvedilol or metoprolol,” Journal of the American College of Cardiology, vol. 52, no. 8, pp. 644–651, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. L. Chen, D. Meyers, and D. Meyers, “Arg389Gly-β1-adrenergic receptors determine improvement in left ventricular systolic function in nonischemic cardiomyopathy patients with heart failure after chronic treatment with carvedilol,” Pharmacogenetics and Genomics, vol. 17, no. 11, pp. 941–949, 2007. View at Publisher · View at Google Scholar · View at PubMed
  27. J. N. Cohn, R. Ferrari, and N. Sharpe, “Cardiac remodeling-concepts and clinical implications: a consensus paper from an International Forum on Cardiac Remodeling,” Journal of the American College of Cardiology, vol. 35, no. 3, pp. 569–582, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. B. H. Greenberg, “Effects of angiotensin converting enzyme inhibitors on remodeling in clinical trials,” Journal of Cardiac Failure, vol. 8, no. 6, pp. S486–S490, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. P. W. Armstrong, “Left ventricular dysfunction: causes, natural history, and hopes for reversal,” Heart, vol. 84, supplement 1, pp. i15–i17, 2000. View at Google Scholar · View at Scopus