Table of Contents Author Guidelines Submit a Manuscript
Cardiology Research and Practice
Volume 2012, Article ID 145202, 16 pages
http://dx.doi.org/10.1155/2012/145202
Review Article

Bicuspid Aortic Valve Disease and Ascending Aortic Aneurysms: Gaps in Knowledge

1Department of Anatomy & Cell Biology, University of Western Ontario, London, ON, Canada N6A 5C1
2Division of Cardiac Surgery, Department of Surgery, Lawson Health Research Institute, University of Western Ontario, London, ON, Canada N6A 5A5
3B6-106 University Hospital, London Health Sciences Centre, 339 Windermere Road, P.O. Box 5339, London, ON, Canada N6A 5A5

Received 28 February 2012; Accepted 7 August 2012

Academic Editor: Ani C. Anyanwu

Copyright © 2012 Katie L. Losenno et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Lewis and R. T. Grant, “Observations relating to subacute infective endocarditis,” Heart, vol. 10, pp. 21–99, 1923. View at Google Scholar
  2. G. Wauchope, “The clinical importance of variations in the number of cusps forming the aortic and pulmonary valves,” Quarterly Journal of Medicin, vol. 21, pp. 383–399, 1928. View at Google Scholar
  3. W. C. Roberts, “The congenitally bicuspid aortic valve. A study of 85 autopsy cases,” The American Journal of Cardiology, vol. 26, no. 1, pp. 72–83, 1970. View at Google Scholar · View at Scopus
  4. E. W. Larson and W. D. Edwards, “Risk factors for aortic dissection: a necropsy study of 161 cases,” American Journal of Cardiology, vol. 53, no. 6, pp. 849–855, 1984. View at Google Scholar · View at Scopus
  5. B. N. Datta, B. Bhusnurmath, H. N. Khattri, R. P. Sapru, P. S. Bidwai, and P. L. Wahi, “Anatomically isolated aortic valve disease. Morphologic study of 100 cases at autopsy,” Japanese Heart Journal, vol. 29, no. 5, pp. 661–670, 1988. View at Google Scholar · View at Scopus
  6. H. M. Pauperio, A. C. Azevedo, and C. S. Ferreira, “The aortic valve with two leaflets—a study in 2,000 autopsies,” Cardiology in the Young, vol. 9, no. 5, pp. 488–498, 1999. View at Google Scholar · View at Scopus
  7. C. Basso, M. Boschello, C. Perrone et al., “An echocardiographic survey of primary school children for bicuspid aortic valve,” American Journal of Cardiology, vol. 93, no. 5, pp. 661–663, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. E. Tutar, F. Ekici, S. Atalay, and N. Nacar, “The prevalence of bicuspid aortic valve in newborns by echocardiographic screening,” American Heart Journal, vol. 150, no. 3, pp. 513–515, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Nistri, C. Basso, C. Marzari, P. Mormino, and G. Thiene, “Frequency of bicuspid aortic valve in young male conscripts by echocardiogram,” American Journal of Cardiology, vol. 96, no. 5, pp. 718–721, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Fernández, A. C. Durán, T. Fernández-Gallego et al., “Bicuspid aortic valves with different spatial orientation of the leaflets are distinct etiological entities,” Journal of the American College of Cardiology, vol. 54, no. 24, pp. 2312–2318, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. V. Sans-Coma, M. Cardo, A. C. Durán et al., “Evidence for quantitative genetic influence on the formation of aortic valves with 2 leaflets in the Syrian hamster,” Cardiology in the Young, vol. 3, pp. 132–140, 1993. View at Google Scholar
  12. T. C. Lee, Y. D. Zhao, D. W. Courtman, and D. J. Stewart, “Abnormal aortic valve development in mice lacking endothelial nitric oxide synthase,” Circulation, vol. 101, no. 20, pp. 2345–2348, 2000. View at Google Scholar · View at Scopus
  13. V. Sans-Coma, M. C. Fernández, B. Fernández, A. C. Durán, R. H. Anderson, and J. M. Arqué, “Genetically alike Syrian hamsters display both bifoliate and trifoliate aortic valves,” Journal of Anatomy, vol. 220, no. 1, pp. 92–101, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. S. M. Fernandes, S. P. Sanders, P. Khairy et al., “Morphology of bicuspid aortic valve in children and adolescents,” Journal of the American College of Cardiology, vol. 44, no. 8, pp. 1648–1651, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Y. Sabet, W. D. Edwards, H. D. Tazelaar, and R. C. Daly, “Congenitally bicuspid aortic valves: a surgical pathology study of 542 cases (1991 through 1996) and a literature review of 2,715 additional cases,” Mayo Clinic Proceedings, vol. 74, no. 1, pp. 14–26, 1999. View at Google Scholar · View at Scopus
  16. C. F. Russo, A. Cannata, M. Lanfranconi, E. Vitali, A. Garatti, and E. Bonacina, “Is aortic wall degeneration related to bicuspid aortic valve anatomy in patients with valvular disease?” Journal of Thoracic and Cardiovascular Surgery, vol. 136, no. 4, pp. 937–942, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. B. M. Schaefer, M. B. Lewin, K. K. Stout, P. H. Byers, and C. M. Otto, “Usefulness of bicuspid aortic valve phenotype to predict elastic properties of the ascending aorta,” American Journal of Cardiology, vol. 99, no. 5, pp. 686–690, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. B. M. Schaefer, M. B. Lewin, K. K. Stout et al., “The bicuspid aortic valve: an integrated phenotypic classification of leaflet morphology and aortic root shape,” Heart, vol. 94, no. 12, pp. 1634–1638, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. G. R. Ciotti, A. P. Vlahos, and N. H. Silverman, “Morphology and function of the bicuspid aortic valve with and without coarctation of the aorta in the young,” American Journal of Cardiology, vol. 98, no. 8, pp. 1096–1102, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Angelini, S. Y. Ho, R. H. Anderson et al., “The morphology of the normal aortic valve as compared with the aortic valve having two leaflets,” Journal of Thoracic and Cardiovascular Surgery, vol. 98, no. 3, pp. 362–367, 1989. View at Google Scholar · View at Scopus
  21. F. Robicsek, M. J. Thubrikar, J. W. Cook, and B. Fowler, “The congenitally bicuspid aortic valve: how does it function? Why does it fail?” The Annals of Thoracic Surgery, vol. 77, no. 1, pp. 177–185, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. H. H. Sievers and C. Schmidtke, “A classification system for the bicuspid aortic valve from 304 surgical specimens,” Journal of Thoracic and Cardiovascular Surgery, vol. 133, no. 5, pp. 1226–1233, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. S. S. Fazel, H. R. Mallidi, R. S. Lee et al., “The aortopathy of bicuspid aortic valve disease has distinctive patterns and usually involves the transverse aortic arch,” Journal of Thoracic and Cardiovascular Surgery, vol. 135, no. 4, pp. 901–e2, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. F. A. Kari, S. S. Fazel, R. S. Mitchell, M. P. Fischbein, and D. C. Miller, “Bicuspid aortic valve configuration and aortopathy pattern might represent different pathophysiologic substrates,” Journal of Thoracic and Cardiovascular Surgery, vol. 144, no. 2, pp. 516–517, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. M. J. Collins, J. Butany, M. A. Borger, B. H. Strauss, and T. E. David, “Implications of a congenitally abnormal valve: a study of 1025 consecutively excised aortic valves,” Journal of Clinical Pathology, vol. 61, no. 4, pp. 530–536, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. M. P. Leung, R. McKay, A. Smith, R. H. Anderson, and R. Arnold, “Critical aortic stenosis in early infancy: anatomic and echocardiographic substrates of successful open valvotomy,” Journal of Thoracic and Cardiovascular Surgery, vol. 101, no. 3, pp. 526–535, 1991. View at Google Scholar · View at Scopus
  27. J. H. Moller, A. Nakib, R. S. Eliot, and J. E. Edwards, “Symptomatic congenital aortic stenosis in the first year of life,” Journal of Pediatrics, vol. 69, no. 5, pp. 728–734, 1966. View at Google Scholar · View at Scopus
  28. S. Beppu, S. Suzuki, H. Matsuda, F. Ohmori, S. Nagata, and K. Miyatake, “Rapidity of progression of aortic stenosis in patients with congenital bicuspid aortic valves,” American Journal of Cardiology, vol. 71, no. 4, pp. 322–327, 1993. View at Publisher · View at Google Scholar · View at Scopus
  29. C. A. Conti, A. Della Corte, E. Votta et al., “Biomechanical implications of the congenital bicuspid aortic valve: a finite element study of aortic root function from in vivo data,” Journal of Thoracic and Cardiovascular Surgery, vol. 140, no. 4, pp. 890–e2, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. R. R. Davies, R. K. Kaple, D. Mandapati et al., “Natural history of ascending aortic aneurysms in the setting of an unreplaced bicuspid aortic valve,” The Annals of Thoracic Surgery, vol. 83, no. 4, pp. 1338–1344, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. P. R. Moreno, L. Astudillo, S. Elmariah et al., “Increased macrophage infiltration and neovascularization in congenital bicuspid aortic valve stenosis,” Journal of Thoracic and Cardiovascular Surgery, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. M. B. Lewin and C. M. Otto, “The bicuspid aortic valve: adverse outcomes from infancy to old age,” Circulation, vol. 111, no. 7, pp. 832–834, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. A. S. Sadee, A. E. Becker, H. A. Verheul, B. Bouma, and G. Hoedemaker, “Aortic valve regurgitation and the congenitally bicuspid aortic valve: a clinico-pathological correlation,” British Heart Journal, vol. 67, no. 6, pp. 439–441, 1992. View at Google Scholar · View at Scopus
  34. W. C. Roberts, A. G. Morrow, and C. L. McIntosh, “Congenitally bicuspid aortic valve causing severe, pure aortic regurgitation without superimposed infective endocarditis. Analysis of 13 patients requiring aortic valve replacement,” American Journal of Cardiology, vol. 47, no. 2, pp. 206–209, 1981. View at Google Scholar · View at Scopus
  35. M. J. Roman, R. B. Devereux, and N. W. Niles, “Aortic root dilatation as a cause of isolated, severe aortic regurgitation. Prevalence, clinical and echocardiographic patterns, and relation to left ventricular,” Annals of Internal Medicine, vol. 106, no. 6, pp. 800–807, 1987. View at Google Scholar · View at Scopus
  36. J. W. Roos-Hesselink, B. E. Schölzel, R. J. Heijdra et al., “Aortic valve and aortic arch pathology after coarctation repair,” Heart, vol. 89, no. 9, pp. 1074–1077, 2003. View at Google Scholar · View at Scopus
  37. A. B. Stewart, R. Ahmed, C. M. Travill, and C. G. H. Newman, “Coarctation of the aorta life and health 20-44 yers after surgery repair,” British Heart Journal, vol. 69, no. 1, pp. 65–70, 1993. View at Google Scholar · View at Scopus
  38. C. Schreiber, D. Mazzitelli, J. C. Haehnel, H. P. Lorenz, and H. Meisner, “The interrupted aortic arch: an overview after 20 years of surgical treatment,” European Journal of Cardio-Thoracic Surgery, vol. 12, no. 3, pp. 466–470, 1997. View at Publisher · View at Google Scholar · View at Scopus
  39. S. F. Bolling, M. D. Iannettoni, M. Dick, A. Rosenthal, and E. L. Bove, “Shone's anomaly: operative results and late outcome,” The Annals of Thoracic Surgery, vol. 49, no. 6, pp. 887–893, 1990. View at Google Scholar · View at Scopus
  40. J. I. Brenner, K. A. Berg, D. S. Schneider, E. B. Clark, and J. A. Boughman, “Cardiac malformations in relatives of infants with hypoplastic left-heart syndrome,” American Journal of Diseases of Children, vol. 143, no. 12, pp. 1492–1494, 1989. View at Google Scholar · View at Scopus
  41. W. C. Roberts, A. G. Morrow, and E. Braunwald, “Complete interruption of the aortic arch,” Circulation, vol. 26, pp. 39–59, 1962. View at Google Scholar · View at Scopus
  42. R. B. Hinton, L. J. Martin, M. E. Tabangin, M. L. Mazwi, L. H. Cripe, and D. W. Benson, “Hypoplastic left heart syndrome is heritable,” Journal of the American College of Cardiology, vol. 50, no. 16, pp. 1590–1595, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. C. B. Higgins and L. Wexler, “Reversal of dominance of the coronary arterial system in isolated aortic stenosis and bicuspid aortic valve,” Circulation, vol. 52, no. 2, pp. 292–296, 1975. View at Google Scholar · View at Scopus
  44. G. M. Hutchins, I. H. Nazarian, and B. H. Bulkley, “Association of left dominant coronary arterial system with congenital bicuspid aortic valve,” American Journal of Cardiology, vol. 42, no. 1, pp. 57–59, 1978. View at Google Scholar · View at Scopus
  45. E. S. Murphy, J. Rosch, and S. H. Rahimtoola, “Frequency and significance of coronary arterial dominance in isolated aortic stenosis,” American Journal of Cardiology, vol. 39, no. 4, pp. 505–509, 1977. View at Google Scholar · View at Scopus
  46. P. K. Lerer and W. D. Edwards, “Coronary arterial anatomy in bicuspid aortic valve. Necropsy study of 100 hearts,” British Heart Journal, vol. 45, no. 2, pp. 142–147, 1981. View at Google Scholar · View at Scopus
  47. M. E. Abbott, “Coarctation of the aorta of the adult type. II. A statistical study and historical retrospect of 200 recorded cases with autopsy, of stenosis or obliteration of the descending arch in subjects above the age of two years,” American Heart Journal, vol. 3, no. 5, pp. 574–618, 1928. View at Google Scholar · View at Scopus
  48. G. J. Morgan-Hughes, C. A. Roobottom, P. E. Owens, and A. J. Marshall, “Dilatation of the aorta in pure, severe, bicuspid aortic valve stenosis,” American Heart Journal, vol. 147, no. 4, pp. 736–740, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. V. T. Nkomo, M. Enriquez-Sarano, N. M. Ammash et al., “Bicuspid aortic valve associated with aortic dilatation: a community-based study,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 2, pp. 351–356, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. W. D. Edwards, D. S. Leaf, and J. E. Edwards, “Dissecting aortic aneurysm associated with congenital bicuspid aortic valve,” Circulation, vol. 57, no. 5, pp. 1022–1025, 1978. View at Google Scholar · View at Scopus
  51. C. S. Roberts and W. C. Roberts, “Dissection of the aorta associated with congenital malformation of the aortic valve,” Journal of the American College of Cardiology, vol. 17, no. 3, pp. 712–716, 1991. View at Google Scholar · View at Scopus
  52. H. I. Michelena, A. D. Khanna, D. Mahoney et al., “Incidence of aortic complications in patients with bicuspid aortic valves,” JAMA, vol. 306, no. 10, pp. 1104–1112, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. N. Tzemos, J. Therrien, J. Yip et al., “Outcomes in adults with bicuspid aortic valves,” JAMA, vol. 300, no. 11, pp. 1317–1325, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. S. Nistri, M. D. Sorbo, M. Marin, M. Palisi, R. Scognamiglio, and G. Thiene, “Aortic root dilatation in young men with normally functioning bicuspid aortic valves,” Heart, vol. 82, no. 1, pp. 19–22, 1999. View at Google Scholar · View at Scopus
  55. G. M. Novaro, I. Y. Tiong, G. L. Pearce, R. A. Grimm, N. Smedira, and B. P. Griffin, “Features and predictors of ascending aortic dilatation in association with a congenital bicuspid aortic valve,” American Journal of Cardiology, vol. 92, no. 1, pp. 99–101, 2003. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Ferencik and L. A. Pape, “Changes in size of ascending aorta and aortic valve function with time in patients with congenitally bicuspid aortic valves,” American Journal of Cardiology, vol. 92, no. 1, pp. 43–46, 2003. View at Publisher · View at Google Scholar · View at Scopus
  57. H. I. Michelena, V. A. Desjardins, J. F. Avierinos et al., “Natural history of asymptomatic patients with normally functioning or minimally dysfunctional bicuspid aortic valve in the community,” Circulation, vol. 117, no. 21, pp. 2776–2784, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. M. G. Keane, S. E. Wiegers, T. Plappert, A. Pochettino, J. E. Bavaria, and S. M. G. S. John, “Bicuspid aortic valves are associated with aortic dilatation out of proportion to coexistent valvular lesions,” Circulation, vol. 102, no. 19, pp. III35–III39, 2000. View at Google Scholar · View at Scopus
  59. G. Thanassoulis, J. W. L. Yip, K. Filion et al., “Retrospective study to identify predictors of the presence and rapid progression of aortic dilatation in patients with bicuspid aortic valves,” Nature Clinical Practice Cardiovascular Medicine, vol. 5, no. 12, pp. 821–828, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. J. D. Seder, J. F. Burke, and F. J. Pauletto, “Prevalence of aortic regurgitation by color flow Doppler in relation to aortic root size,” Journal of the American Society of Echocardiography, vol. 3, no. 4, pp. 316–319, 1990. View at Google Scholar · View at Scopus
  61. M. D. Hope, T. A. Hope, A. K. Meadows et al., “Bicuspid aortic valve: four-dimensional MR evaluation of ascending aortic systolic flow patterns,” Radiology, vol. 255, no. 1, pp. 53–61, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. C. Vergara, F. Viscardi, L. Antiga, and G. B. Luciani, “Influence of bicuspid valve geometry on ascending aortic fluid dynamics: a parametric study,” Artificial Organs, vol. 36, no. 4, pp. 368–378. View at Publisher · View at Google Scholar
  63. M. Bauer, V. Gliech, H. Siniawski, and R. Hetzer, “Configuration of the ascending aorta in patients with bicuspid and tricuspid aortic valve disease undergoing aortic valve replacement with or without reduction aortoplasty,” The Journal of Heart Valve Disease, vol. 15, no. 5, pp. 594–600, 2006. View at Google Scholar · View at Scopus
  64. A. Della Corte, C. Quarto, C. Bancone et al., “Spatiotemporal patterns of smooth muscle cell changes in ascending aortic dilatation with bicuspid and tricuspid aortic valve stenosis: focus on cell-matrix signaling,” Journal of Thoracic and Cardiovascular Surgery, vol. 135, no. 1, pp. 8–e2, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. A. Della Corte, C. Bancone, C. Quarto et al., “Predictors of ascending aortic dilatation with bicuspid aortic valve: a wide spectrum of disease expression,” European Journal of Cardio-Thoracic Surgery, vol. 31, no. 3, pp. 397–405, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. M. Nataatmadja, M. West, J. West et al., “Abnormal extracellular matrix protein transport associated with increased apoptosis of vascular smooth muscle cells in Marfan syndrome and bicuspid aortic valve thoracic aortic aneurysm,” Circulation, vol. 108, no. 10, pp. II329–II334, 2003. View at Google Scholar · View at Scopus
  67. F. X. Schmid, K. Bielenberg, S. Holmer et al., “Structural and biomolecular changes in aorta and pulmonary trunk of patients with aortic aneurysm and valve disease: implications for the Ross procedure,” European Journal of Cardio-Thoracic Surgery, vol. 25, no. 5, pp. 748–753, 2004. View at Publisher · View at Google Scholar · View at Scopus
  68. V. A. McKusick, “Association of congenital bicuspid aortic valve and erdheim's cystic medial necrosis,” The Lancet, vol. 1, no. 7758, pp. 1026–1027, 1972. View at Google Scholar · View at Scopus
  69. K. Niwa, J. K. Perloff, S. M. Bhuta et al., “Structural abnormalities of great arterial walls in congenital heart disease: light and electron microscopic analyses,” Circulation, vol. 103, no. 3, pp. 393–400, 2001. View at Google Scholar · View at Scopus
  70. M. De Sa, Y. Moshkovitz, J. Butany et al., “Histologic abnormalities of the ascending aorta and pulmonary trunk in patients with bicuspid aortic valve disease: clinical relevance to the Ross procedure,” Journal of Thoracic and Cardiovascular Surgery, vol. 118, no. 4, pp. 588–596, 1999. View at Publisher · View at Google Scholar · View at Scopus
  71. T. M. Tadros, M. D. Klein, and O. M. Shapira, “Ascending aortic dilatation associated with bicuspid aortic valve. Pathophysiology, molecular biology, and clinical implications,” Circulation, vol. 119, no. 6, pp. 880–890, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. D. Bonderman, E. Gharehbaghi-Schnell, G. Wollenek, G. Maurer, H. Baumgartner, and I. M. Lang, “Mechanisms underlying aortic dilatation in congenital aortic valve malformation,” Circulation, vol. 99, no. 16, pp. 2138–2143, 1999. View at Google Scholar · View at Scopus
  73. E. M. Isselbacher, “Thoracic and abdominal aortic aneurysms,” Circulation, vol. 111, no. 6, pp. 816–828, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. C. Pisano, E. Maresi, C. R. Balistreri et al., “Histological and genetic studies in patients with bicuspid aortic valve and ascending aorta complications,” Interactive CardioVascular and Thoracic Surgery, vol. 14, no. 3, pp. 300–306, 2011. View at Publisher · View at Google Scholar
  75. M. Cotrufo, A. Della Corte, L. S. De Santo et al., “Different patterns of extracellular matrix protein expression in the convexity and the concavity of the dilated aorta with bicuspid aortic valve: preliminary results,” Journal of Thoracic and Cardiovascular Surgery, vol. 130, no. 2, pp. 504–511, 2005. View at Publisher · View at Google Scholar · View at Scopus
  76. R. P. Visconti, J. L. Barth, F. W. Keeley, and C. D. Little, “Codistribution analysis of elastin and related fibrillar proteins in early vertebrate development,” Matrix Biology, vol. 22, no. 2, pp. 109–121, 2003. View at Publisher · View at Google Scholar · View at Scopus
  77. K. P. Dingemans, P. Teeling, J. H. Lagendijk, and A. E. Becker, “Extracellular matrix of the human aortic media: an ultrastructural histochemical and immunohistochemical study of the adult aortic media,” The Anatomical Record, vol. 258, pp. 1–14, 2000. View at Google Scholar
  78. P. W. M. Fedak, S. Verma, T. E. David, R. L. Leask, R. D. Weisel, and J. Butany, “Clinical and pathophysiological implications of a bicuspid aortic valve,” Circulation, vol. 106, no. 8, pp. 900–904, 2002. View at Publisher · View at Google Scholar · View at Scopus
  79. P. W. M. Fedak, M. P. L. De Sa, S. Verma et al., “Vascular matrix remodeling in patients with bicuspid aortic valve malformations: implications for aortic dilatation,” Journal of Thoracic and Cardiovascular Surgery, vol. 126, no. 3, pp. 797–806, 2003. View at Publisher · View at Google Scholar · View at Scopus
  80. R. W. Thompson, D. R. Holmes, R. A. Mertens et al., “Production and localization of 92-kilodalton gelatinase in abdominal aortic aneurysms. An elastolytic metalloproteinase expressed by aneurysm-infiltrating macrophages,” The Journal of Clinical Investigation, vol. 96, no. 1, pp. 318–326, 1995. View at Google Scholar · View at Scopus
  81. N. A. Tamarina, W. D. McMillan, V. P. Shively, and W. H. Pearce, “Expression of matrix metalloproteinases and their inhibitors in aneurysms and normal aorta,” Surgery, vol. 122, no. 2, pp. 264–272, 1997. View at Publisher · View at Google Scholar · View at Scopus
  82. J. Boyum, E. K. Fellinger, J. D. Schmoker et al., “Matrix metalloproteinase activity in thoracic aortic aneurysms associated with bicuspid and tricuspid aortic valves,” Journal of Thoracic and Cardiovascular Surgery, vol. 127, no. 3, pp. 686–691, 2004. View at Publisher · View at Google Scholar · View at Scopus
  83. J. A. Phillippi, E. A. Klyachko, J. P. Kenny, M. A. Eskay, R. C. Gorman, and T. G. Gleason, “Basal and oxidative stress-induced expression of metallothionein is decreased in ascending aortic aneurysms of bicuspid aortic valve patients,” Circulation, vol. 119, no. 18, pp. 2498–2506, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. S. A. Lemaire, X. Wang, J. A. Wilks et al., “Matrix metalloproteinases in ascending aortic aneurysms: bicuspid versus trileaflet aortic valves,” Journal of Surgical Research, vol. 123, no. 1, pp. 40–48, 2005. View at Publisher · View at Google Scholar · View at Scopus
  85. J. S. Ikonomidis, J. A. Jones, J. R. Barbour et al., “Expression of matrix metalloproteinases and endogenous inhibitors within ascending aortic aneurysms of patients with bicuspid or tricuspid aortic valves,” Journal of Thoracic and Cardiovascular Surgery, vol. 133, no. 4, pp. 1028–1036, 2007. View at Publisher · View at Google Scholar · View at Scopus
  86. N. Tzemos, E. Lyseggen, C. Silversides et al., “Endothelial function, carotid-femoral stiffness, and plasma matrix metalloproteinase-2 in men with bicuspid aortic valve and dilated aorta,” Journal of the American College of Cardiology, vol. 55, no. 7, pp. 660–668, 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. G. J. Koullias, D. P. Korkolis, P. Ravichandran, A. Psyrri, I. Hatzaras, and J. A. Elefteriades, “Tissue microarray detection of matrix metalloproteinases, in diseased tricuspid and bicuspid aortic valves with or without pathology of the ascending aorta,” European Journal of Cardio-Thoracic Surgery, vol. 26, no. 6, pp. 1098–1103, 2004. View at Publisher · View at Google Scholar · View at Scopus
  88. V. Gambillara, G. Montorzi, C. Haziza-Pigeon, N. Stergiopulos, and P. Silacci, “Arterial wall response to ex vivo exposure to oscillatory shear stress,” Journal of Vascular Research, vol. 42, no. 6, pp. 535–544, 2005. View at Publisher · View at Google Scholar · View at Scopus
  89. E. Wilton, M. Bland, M. Thompson, and M. Jahangiri, “Work in progress report—valves: matrix metalloproteinase expression in the ascending aorta and aortic valve,” Interactive Cardiovascular and Thoracic Surgery, vol. 7, no. 1, pp. 37–40, 2008. View at Publisher · View at Google Scholar · View at Scopus
  90. J. S. Ikonomidis, J. M. Rudy, S. M. Benton et al., “Aortic dilatation with bicuspid aortic valves: cusp fusion correlates to matrix metalloproteinases and inhibitors,” The Annals of Thoracic Surgery, vol. 93, pp. 457–463, 2012. View at Google Scholar
  91. M. A. Ergin, D. Spielvogel, A. Apaydin et al., “Surgical treatment of the dilated ascending aorta: when and how?” The Annals of Thoracic Surgery, vol. 67, no. 6, pp. 1834–1839, 1999. View at Publisher · View at Google Scholar · View at Scopus
  92. J. A. Elefteriades, “Natural history of thoracic aortic aneurysms: indications for surgery, and surgical versus nonsurgical risks,” The Annals of Thoracic Surgery, vol. 74, no. 5, pp. S1877–S1880, 2002. View at Publisher · View at Google Scholar · View at Scopus
  93. E. Neri, L. Barabesi, D. Buklas et al., “Limited role of aortic size in the genesis of acute type A aortic dissection,” European Journal of Cardio-Thoracic Surgery, vol. 28, no. 6, pp. 857–863, 2005. View at Publisher · View at Google Scholar · View at Scopus
  94. W. D. Edwards, D. S. Leaf, and J. E. Edwards, “Dissecting aortic aneurysm associated with congenital bicuspid aortic valve,” Circulation, vol. 57, no. 5, pp. 1022–1025, 1978. View at Google Scholar · View at Scopus
  95. C. D. Etz, S. Zoli, R. Brenner et al., “When to operate on the bicuspid valve patient with a modestly dilated ascending aorta,” The Annals of Thoracic Surgery, vol. 90, no. 6, pp. 1884–1890, 2010. View at Publisher · View at Google Scholar · View at Scopus
  96. K. Huntington, A. G. W. Hunter, and K. L. Chan, “A prospective study to assess the frequency of familial clustering of congenital bicuspid aortic valve,” Journal of the American College of Cardiology, vol. 30, no. 7, pp. 1809–1812, 1997. View at Publisher · View at Google Scholar · View at Scopus
  97. L. Cripe, G. Andelfinger, L. J. Martin, K. Shooner, and D. W. Benson, “Bicuspid aortic valve is heritable,” Journal of the American College of Cardiology, vol. 44, no. 1, pp. 138–143, 2004. View at Publisher · View at Google Scholar · View at Scopus
  98. M. L. Loscalzo, D. L. M. Goh, B. Loeys, K. C. Kent, P. J. Spevak, and H. C. Dietz, “Familial thoracic aortic dilation and bicommissural aortic valve: a prospective analysis of natural history and inheritance,” American Journal of Medical Genetics, Part A, vol. 143, no. 17, pp. 1960–1967, 2007. View at Publisher · View at Google Scholar · View at Scopus
  99. V. Garg, A. N. Muth, J. F. Ransom et al., “Mutations in NOTCH1 cause aortic valve disease,” Nature, vol. 437, no. 7056, pp. 270–274, 2005. View at Publisher · View at Google Scholar · View at Scopus
  100. S. H. McKellar, D. J. Tester, M. Yagubyan, R. Majumdar, M. J. Ackerman, and T. M. Sundt, “Novel NOTCH1 mutations in patients with bicuspid aortic valve disease and thoracic aortic aneurysms,” Journal of Thoracic and Cardiovascular Surgery, vol. 134, no. 2, pp. 290–296, 2007. View at Publisher · View at Google Scholar · View at Scopus
  101. J. Z. Stoller and J. A. Epstein, “Cardiac neural crest,” Seminars in Cell and Developmental Biology, vol. 16, no. 6, pp. 704–715, 2005. View at Publisher · View at Google Scholar · View at Scopus
  102. L. J. Martin, R. B. Hinton, X. Zhang, L. H. Cripe, and D. W. Benson, “Aorta measurements are heritable and influenced by bicuspid aortic valve,” Frontiers in Genetics, vol. 2, article 61, 2011. View at Google Scholar
  103. G. La Canna, E. Ficarra, E. Tsagalau et al., “Progression rate of ascending aortic dilation in patients with normally functioning bicuspid and tricuspid aortic valves,” American Journal of Cardiology, vol. 98, no. 2, pp. 249–253, 2006. View at Publisher · View at Google Scholar · View at Scopus
  104. A. Dore, M. C. Brochu, J. F. Baril, M. C. Guertin, and L. A. Mercier, “Progressive dilation of the diameter of the aortic root in adults with a bicuspid aortic valve,” Cardiology in the Young, vol. 13, no. 6, pp. 526–531, 2003. View at Publisher · View at Google Scholar · View at Scopus
  105. G. M. Novaro and B. P. Griffin, “Congenital bicuspid aortic valve and rate of ascending aortic dilatation,” American Journal of Cardiology, vol. 93, no. 4, pp. 525–526, 2004. View at Publisher · View at Google Scholar · View at Scopus
  106. K. W. Holmes, C. U. Lehmann, D. Dalal et al., “Progressive dilation of the ascending aorta in children with isolated bicuspid aortic valve,” American Journal of Cardiology, vol. 99, no. 7, pp. 978–983, 2007. View at Publisher · View at Google Scholar · View at Scopus
  107. I. Shimada, S. J. Rooney, D. Pagano et al., “Prediction of thoracic aortic aneurysm expansion: validation of formulae describing growth,” The Annals of Thoracic Surgery, vol. 67, no. 6, pp. 1968–1970, 1999. View at Publisher · View at Google Scholar · View at Scopus
  108. M. A. Coady, J. A. Rizzo, G. L. Hammond et al., “What is the appropriate size criterion for resection of thoracic aortic aneurysms?” Journal of Thoracic and Cardiovascular Surgery, vol. 113, no. 3, pp. 476–491, 1997. View at Publisher · View at Google Scholar · View at Scopus
  109. D. A. Pietro, A. G. Voelkel, B. J. Ray, and A. F. Parisi, “Reproducibility of echocardiography. A study evaluating the variability of serial echocardiographic measurements,” Chest, vol. 79, no. 1, pp. 29–32, 1981. View at Google Scholar · View at Scopus
  110. J. A. Elefteriades and E. A. Farkas, “Thoracic aortic aneurysm: Cinically pertinent controversies and uncertainties,” Journal of the American College of Cardiology, vol. 55, no. 9, pp. 841–857, 2010. View at Publisher · View at Google Scholar · View at Scopus
  111. A. C. Braverman, H. Guven, M. A. Beardslee, M. Makan, A. M. Kates, and M. R. Moon, “The bicuspid aortic valve,” Current Problems in Cardiology, vol. 30, pp. 470–522, 2005. View at Google Scholar
  112. A. P. Kappetein, A. C. Gittenberger-de Groot, A. H. Zwinderman, J. Rohmer, R. E. Poelmann, and H. A. Huysmans, “The neural crest as a possible pathogenetic factor in coarctation of the aorta and bicuspid aortic valve,” Journal of Thoracic and Cardiovascular Surgery, vol. 102, no. 6, pp. 830–836, 1991. View at Google Scholar · View at Scopus
  113. L. F. Hiratzka, G. L. Bakris, J. A. Beckman et al., “2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with thoracic aortic disease: executive summary—a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines, American Association for Thoracic Surgery, American College of Radiology,” Catheterization and Cardiovascular Interventions, vol. 76, no. 2, pp. E43–E86, 2010. View at Publisher · View at Google Scholar · View at Scopus
  114. D. D. Mendoza, M. Kochar, R. B. Devereux et al., “GenTAC (National Registry of Genetically Triggered Thoracic Aortic Aneurysms and Cardiovascular Conditions) Study Investigators. Impact of image analysis methodology on diagnostic and surgical classification of patients with thoracic aortic aneurysms,” The Annals of Thoracic Surgery, vol. 92, no. 3, pp. 904–912, 2011. View at Google Scholar
  115. L. G. Svensson, K. H. Kim, B. W. Lytle, and D. M. Cosgrove, “Relationship of aortic cross-sectional area to height ratio and the risk of aortic dissection in patients with bicuspid aortic valves,” Journal of Thoracic and Cardiovascular Surgery, vol. 126, no. 3, pp. 892–893, 2003. View at Publisher · View at Google Scholar · View at Scopus
  116. R. R. Davies, A. Gallo, M. A. Coady et al., “Novel measurement of relative aortic size predicts rupture of thoracic aortic aneurysms,” The Annals of Thoracic Surgery, vol. 81, no. 1, pp. 169–177, 2006. View at Publisher · View at Google Scholar · View at Scopus
  117. S. Goland, L. S. C. Czer, M. A. De Robertis et al., “Risk factors associated with reoperation and mortality in 252 patients after aortic valve replacement for congenitally bicuspid aortic valve disease,” The Annals of Thoracic Surgery, vol. 83, no. 3, pp. 931–937, 2007. View at Publisher · View at Google Scholar · View at Scopus
  118. M. A. Borger, M. Preston, J. Ivanov et al., “Should the ascending aorta be replaced more frequently in patients with bicuspid aortic valve disease?” Journal of Thoracic and Cardiovascular Surgery, vol. 128, no. 5, pp. 677–683, 2004. View at Publisher · View at Google Scholar · View at Scopus
  119. E. Girdauskas, K. Disha, H. H. Raisin, M. A. Secknus, M. A. Borger, and T. Kuntze, “Risk of late aortic events after an isolated aortic valve replacement for bicuspid aortic valve stenosis with concomitant ascending aortic dilation,” European Journal Cardio-Thoracic Surgery. In press.
  120. H. Yasuda, S. Nakatani, M. Stugaard et al., “Failure to prevent progressive dilation of ascending aorta by aortic valve replacement in patients with bicuspid aortic valve: comparison with tricuspid aortic valve,” Circulation, vol. 108, no. 10, pp. II291–II294, 2003. View at Google Scholar · View at Scopus
  121. C. F. Russo, S. Mazzetti, A. Garatti et al., “Aortic complications after bicuspid aortic valve replacement: long-term results,” The Annals of Thoracic Surgery, vol. 74, no. 5, pp. S1773–S1776, 2002. View at Publisher · View at Google Scholar · View at Scopus
  122. B. L. Halpern, F. Char, J. L. Murdoch, W. B. Horton, and V. A. McKusick, “A prospectus on the prevention of aortic rupture in the Marfan syndrome with data on survivorship without treatment,” The Johns Hopkins Medical Journal, vol. 129, no. 3, pp. 123–129, 1971. View at Google Scholar · View at Scopus
  123. J. Shores, K. R. Berger, E. A. Murphy, and R. E. Pyeritz, “Progression of aortic dilatation and the benefit of long-term β-adrenergic blockade in Marfan's syndrome,” The New England Journal of Medicine, vol. 330, no. 19, pp. 1335–1341, 1994. View at Publisher · View at Google Scholar · View at Scopus
  124. M. Ladouceur, C. Fermanian, J. M. Lupoglazoff et al., “Effect of beta-blockade on ascending aortic dilatation in children with Marfan's syndrome,” American Journal of Cardiology, vol. 99, no. 3, pp. 406–409, 2007. View at Publisher · View at Google Scholar · View at Scopus
  125. E. S. Selamet Tierney, B. Feingold, B. F. Printz et al., “Beta-blocker therapy does not alter the rate of aortic root dilation in pediatric patients with Marfan's syndrome,” Journal of Pediatrics, vol. 150, no. 1, pp. 77–82, 2007. View at Publisher · View at Google Scholar · View at Scopus
  126. J. P. Habashi, D. P. Judge, T. M. Holm et al., “Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome,” Science, vol. 312, no. 5770, pp. 117–121, 2006. View at Publisher · View at Google Scholar · View at Scopus
  127. T. Radonic, P. de Witte, M. J. H. Baars, A. H. Zwinderman, B. J. M. Mulder, and M. Groenink, “Losartan therapy in adults with Marfan syndrome: study protocol of the multi-center randomized controlled COMPARE trial,” Trials, vol. 11, article 3, 2010. View at Publisher · View at Google Scholar · View at Scopus
  128. D. Detaint, P. Aegerter, F. Tubach et al., “Rationale and design of a randomized clinical trial (Marfan Sartan) of angiotensin II receptor blocker therapy versus placebo in individuals with Marfan syndrome,” Archives of Cardiovascular Diseases, vol. 103, no. 5, pp. 317–325, 2010. View at Publisher · View at Google Scholar · View at Scopus
  129. Hamilton Health Sciences Corporation, “Beta blockers and angiotensin receptor blockers in bicuspid aortic valve disease aortopathy (BAV Study),” in ClinicalTrials.Gov, National Library of Medicine (US), Bethesda, Md, USA, 2000, http://clinicaltrials.gov/ct2/show/NCT01202721. View at Google Scholar
  130. A. Vahanian, H. Baumgartner, J. Bax et al., “Guidelines on the management of valvular heart disease: the task force on the management of valvular heart disease of the European society of cardiology,” European Heart Journal, vol. 28, no. 2, pp. 230–268, 2007. View at Publisher · View at Google Scholar · View at Scopus
  131. J. M. Brown, S. M. O'Brien, C. Wu, J. A. H. Sikora, B. P. Griffith, and J. S. Gammie, “Isolated aortic valve replacement in North America comprising 108,687 patients in 10 years: changes in risks, valve types, and outcomes in the Society of Thoracic Surgeons National Database,” Journal of Thoracic and Cardiovascular Surgery, vol. 137, no. 1, pp. 82–90, 2009. View at Publisher · View at Google Scholar · View at Scopus
  132. K. J. Zehr, T. A. Orszulak, C. J. Mullany et al., “Surgery for aneurysms of the aortic root: a 30-year experience,” Circulation, vol. 110, no. 11, pp. 1364–1371, 2004. View at Publisher · View at Google Scholar · View at Scopus
  133. C. D. Etz, T. M. Homann, D. Silovitz et al., “Long-term survival after the Bentall procedure in 206 patients with bicuspid aortic valve,” The Annals of Thoracic Surgery, vol. 84, no. 4, pp. 1186–1194, 2007. View at Publisher · View at Google Scholar · View at Scopus
  134. T. E. David, S. Armstrong, M. Maganti, J. Colman, and T. J. Bradley, “Long-term results of aortic valve-sparing operations in patients with Marfan syndrome,” Journal of Thoracic and Cardiovascular Surgery, vol. 138, no. 4, pp. 859–864, 2009. View at Publisher · View at Google Scholar · View at Scopus
  135. M. H. Yacoub, P. Gehle, V. Chandrasekaran et al., “Late results of a valve-preserving operation in patients with aneurysms of the ascending aorta and root,” Journal of Thoracic and Cardiovascular Surgery, vol. 115, no. 5, pp. 1080–1090, 1998. View at Publisher · View at Google Scholar · View at Scopus
  136. D. Aicher, R. Fries, S. Rodionycheva, K. Schmidt, F. Langer, and H. J. Schäfers, “Aortic valve repair leads to a low incidence of valve-related complications,” European Journal of Cardio-Thoracic Surgery, vol. 37, no. 1, pp. 127–132, 2010. View at Publisher · View at Google Scholar · View at Scopus
  137. M. Boodhwani, L. de Kerchove, D. Glineur et al., “Repair-oriented classification of aortic insufficiency: impact on surgical techniques and clinical outcomes,” Journal of Thoracic and Cardiovascular Surgery, vol. 137, no. 2, pp. 286–294, 2009. View at Publisher · View at Google Scholar · View at Scopus
  138. H. J. Schäfers, T. Kunihara, P. Fries, B. Brittner, and D. Aicher, “Valve-preserving root replacement in bicuspid aortic valves,” Journal of Thoracic and Cardiovascular Surgery, vol. 140, no. 6, pp. S36–S40, 2010. View at Publisher · View at Google Scholar · View at Scopus
  139. I. El-Hamamsy, Z. Eryigit, L. M. Stevens et al., “Long-term outcomes after autograft versus homograft aortic root replacement in adults with aortic valve disease: a randomised controlled trial,” The Lancet, vol. 376, no. 9740, pp. 524–531, 2010. View at Publisher · View at Google Scholar · View at Scopus
  140. T. E. David, A. Woo, S. Armstrong, and M. Maganti, “When is the Ross operation a good option to treat aortic valve disease?” Journal of Thoracic and Cardiovascular Surgery, vol. 139, no. 1, pp. 68–75, 2010. View at Publisher · View at Google Scholar · View at Scopus
  141. M. M. Mokhles, D. Rizopoulos, E. R. Andrinopoulou et al., “Autograft and pulmonary allograft performance in the second post-operative decade after the Ross procedure: insights from the Rotterdam Prospective Cohort Study,” European Heart Journal, vol. 33, no. 17, pp. 2213–2224, 2012. View at Publisher · View at Google Scholar · View at Scopus
  142. T. E. David, A. Omran, J. Ivanov et al., “Dilation of the pulmonary autograft after the Ross procedure,” Journal of Thoracic and Cardiovascular Surgery, vol. 119, no. 2, pp. 210–220, 2000. View at Google Scholar · View at Scopus