Table of Contents Author Guidelines Submit a Manuscript
Cardiology Research and Practice
Volume 2012, Article ID 201742, 11 pages
http://dx.doi.org/10.1155/2012/201742
Research Article

Omega-3 Status and the Relationship between Plasma Asymmetric Dimethylarginine and Risk of Myocardial Infarction in Patients with Suspected Coronary Artery Disease

1Institute of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
2Department of Heart Disease, Haukeland University Hospital, 5021 Bergen, Norway
3Division of Cardiology, Stavanger University Hospital, 4011 Stavanger, Norway

Received 21 May 2012; Accepted 27 November 2012

Academic Editor: Vicky A. Cameron

Copyright © 2012 Heidi Borgeraas et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. R. Kapadia, L. W. Chow, N. D. Tsihlis et al., “Nitric oxide and nanotechnology: a novel approach to inhibit neointimal hyperplasia,” Journal of Vascular Surgery, vol. 47, no. 1, pp. 173–182, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Dulak, A. Jozkowicz, A. Dembinska-Kiec et al., “Nitric oxide induces the synthesis of vascular endothelial growth factor by rat vascular smooth muscle cells,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 20, no. 3, pp. 659–666, 2000. View at Google Scholar
  3. J. P. Cooke, “Flow, NO, and atherogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 3, pp. 768–770, 2003. View at Google Scholar
  4. P. Vallance, A. Leone, A. Calver, J. Collier, and S. Moncada, “Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure,” The Lancet, vol. 339, no. 8793, pp. 572–575, 1992. View at Publisher · View at Google Scholar · View at Scopus
  5. V. Sorrenti, F. Mazza, A. Campisi, L. Vanella, G. Li Volti, and C. di Giacomo, “High glucose-mediated imbalance of nitric oxide synthase and dimethylarginine dimethylaminohydrolase expression in endothelial cells,” Current Neurovascular Research, vol. 3, no. 1, pp. 49–54, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Ito, P. S. Tsao, S. Adimoolam, M. Kimoto, T. Ogawa, and J. P. Cooke, “Novel mechanism for endothelial dysfunction: dysregulation of dimethylarginine dimethylaminohydrolase,” Circulation, vol. 99, no. 24, pp. 3092–3095, 1999. View at Google Scholar · View at Scopus
  7. R. H. Böger, K. Sydow, J. Borlak et al., “LDL cholesterol upregulates synthesis of asymmetrical dimethylarginine in human endothelial cells: involvement of S-adenosylmethionine-dependent methyltransferases,” Circulation Research, vol. 87, no. 2, pp. 99–105, 2000. View at Google Scholar · View at Scopus
  8. S. Wakino, K. Hayashi, S. Tatematsu et al., “Pioglitazone lowers systemic asymmetric dimethylarginine by inducing dimethylarginine dimethylaminohydrolase in rats,” Hypertension Research, vol. 28, no. 3, pp. 255–262, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Y. Ivashchenko, B. T. Bradley, Z. Ao, J. Leiper, P. Vallance, and D. G. Johns, “Regulation of the ADMA-DDAH system in endothelial cells: a novel mechanism for the sterol response element binding proteins, SREBP1c and -2,” American Journal of Physiology, vol. 298, no. 1, pp. H251–H258, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. H. E. Xu, M. H. Lambert, V. G. Montana et al., “Molecular recognition of fatty acids by peroxisome proliferator-activated receptors,” Molecular Cell, vol. 3, no. 3, pp. 397–403, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Xu, M. Teran-Garcia, J. H. Y. Park, M. T. Nakamura, and S. D. Clarke, “Polyunsaturated fatty acids suppress hepatic sterol regulatory element-binding protein-1 expression by accelerating transcript decay,” Journal of Biological Chemistry, vol. 276, no. 13, pp. 9800–9807, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Mozaffarian, “Does alpha-linolenic acid intake reduce the risk of coronary heart disease? A review of the evidence,” Alternative Therapies in Health and Medicine, vol. 11, no. 3, pp. 24–31, 2005. View at Google Scholar · View at Scopus
  13. S. M. Kwak, S. K. Myung, Y. J. Lee, H. G. Seo, Korean Meta-analysis Study Group et al., “Efficacy of omega-3 fatty acid supplements (eicosapentaenoic acid and docosahexaenoic acid) in the secondary prevention of cardiovascular disease: a meta-analysis of randomized, double-blind, placebo-controlled trials,” Archives of Internal Medicine, vol. 172, no. 9, pp. 686–694, 2012. View at Google Scholar
  14. C. R. Harper and T. A. Jacobson, “Usefulness of omega-3 fatty acids and the prevention of coronary heart disease,” American Journal of Cardiology, vol. 96, no. 11, pp. 1521–1529, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. H. M. A. Eid, H. Arnesen, E. M. Hjerkinn, T. Lyberg, I. Ellingsen, and I. Seljeflot, “Effect of diet and omega-3 fatty acid intervention on asymmetric dimethylarginine,” Nutrition and Metabolism, vol. 3, article 4, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Raimondi, M. Lodovici, F. Visioli et al., “n-3 polyunsaturated fatty acids supplementation decreases asymmetric dimethyl arginine and arachidonate accumulation in aging spontaneously hypertensive rats,” European Journal of Nutrition, vol. 44, no. 6, pp. 327–333, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Fard, C. H. Tuck, J. A. Donis et al., “Acute elevations of plasma asymmetric dimethylarginine and impaired endothelial function in response to a high-fat meal in patients with type 2 diabetes,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 20, no. 9, pp. 2039–2044, 2000. View at Google Scholar · View at Scopus
  18. M. Ebbing, Ø. Bleie, P. M. Ueland et al., “Mortality and cardiovascular events in patients treated with homocysteine-lowering B vitamins after coronary angiography: a randomized controlled trial,” Journal of the American Medical Association, vol. 300, no. 7, pp. 795–804, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. M. S. Manger, E. Strand, M. Ebbing et al., “Dietary intake of n-3 long-chain polyunsaturated fatty acids and coronary events in Norwegian patients with coronary artery disease,” American Journal of Clinical Nutrition, vol. 92, no. 1, pp. 244–251, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. “Biochemical verification of tobacco use and cessation,” Nicotine and Tobacco Research, vol. 4, no. 2, pp. 149–159, 2002.
  21. J. S. Alpert, K. Thygesen, E. Antman, and J. P. Bassand, “Myocardial infarction redefined—a consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction,” European Heart Journal, vol. 21, no. 18, pp. 1502–1513, 2000. View at Google Scholar
  22. M. Kates, General Analytical ProcEdures. Techniques of Lipidology, Elsevier Science, Amsterdam, The Netherlands, 1986.
  23. T. Grimstad, B. Bjørndal, D. Cacabelos et al., “Dietary supplementation of krill oil attenuates inflammation and oxidative stress in experimental ulcerative colitis in rats,” Scandinavian Journal of Gastroenterology, vol. 47, no. 1, pp. 49–58, 2012. View at Google Scholar
  24. O. Midttun, S. Hustad, and P. M. Ueland, “Quantitative profiling of biomarkers related to B-vitamin status, tryptophan metabolism and inflammation in human plasma by liquid chromatography/tandem mass spectrometry,” Rapid Communications in Mass Spectrometry, vol. 23, no. 9, pp. 1371–1379, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. A. S. Levey, L. A. Stevens, C. H. Schmid et al., “A new equation to estimate glomerular filtration rate,” Annals of Internal Medicine, vol. 150, no. 9, pp. 604–612, 2009. View at Google Scholar · View at Scopus
  26. T. M. Therneau and P. M. Grambsch, Modeling Survival Data—Extending the Cox Model, Springer, New York, NY, USA, 2000.
  27. J. D. Horowitz and T. Heresztyn, “An overview of plasma concentrations of asymmetric dimethylarginine (ADMA) in health and disease and in clinical studies: methodological considerations,” Journal of Chromatography B, vol. 851, no. 1-2, pp. 42–50, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. E. Cavusoglu, C. Ruwende, V. Chopra et al., “Relationship of baseline plasma ADMA levels to cardiovascular outcomes at 2 years in men with acute coronary syndrome referred for coronary angiography,” Coronary Artery Disease, vol. 20, no. 2, pp. 112–117, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Leong, D. Zylberstein, I. Graham et al., “Asymmetric dimethylarginine independently predicts fatal and nonfatal myocardial infarction and stroke in women: 24-year follow-up of the population study of women in Gothenburg,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 5, pp. 961–967, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. R. H. Böger, R. Maas, F. Schulze, and E. Schwedhelm, “Asymmetric dimethylarginine (ADMA) as a prospective marker of cardiovascular disease and mortality—an update on patient populations with a wide range of cardiovascular risk,” Pharmacological Research, vol. 60, no. 6, pp. 481–487, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. J. I. Harris, J. R. Hibbeln, R. H. Mackey, and M. F. Muldoon, “Statin treatment alters serum n-3 and n-6 fatty acids in hypercholesterolemic patients,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 71, no. 4, pp. 263–269, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. F. Abbasi, T. Asagmi, J. P. Cooke et al., “Plasma concentrations of asymmetric dimethylarginine are increased in patients with type 2 diabetes mellitus,” American Journal of Cardiology, vol. 88, no. 10, pp. 1201–1203, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Wall, R. P. Ross, G. F. Fitzgerald, and C. Stanton, “Fatty acids from fish: the anti-inflammatory potential of long-chain omega-3 fatty acids,” Nutrition Reviews, vol. 68, no. 5, pp. 280–289, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. F. B. Hu, M. J. Stampfer, E. Rimm et al., “Dietary fat and coronary heart disease: a comparison of approaches for adjusting for total energy intake and modeling repeated dietary measurements,” American Journal of Epidemiology, vol. 149, no. 6, pp. 531–540, 1999. View at Google Scholar · View at Scopus
  35. Q. Sun, J. Ma, H. Campos, S. E. Hankinson, and F. B. Hu, “Comparison between plasma and erythrocyte fatty acid content as biomarkers of fatty acid intake in US women,” American Journal of Clinical Nutrition, vol. 86, no. 1, pp. 74–81, 2007. View at Google Scholar · View at Scopus
  36. M. B. Katan, J. P. Deslypere, A. P. J. M. Van Birgelen, M. Penders, and M. Zegwaard, “Kinetics of the incorporation of dietary fatty acids into serum cholesteryl esters, erythrocyte membranes, and adipose tissue: an 18-month controlled study,” Journal of Lipid Research, vol. 38, no. 10, pp. 2012–2022, 1997. View at Google Scholar · View at Scopus
  37. W. Willett, Nutritional Epidemiology, Oxford University Press, Oxford, UK, 2nd edition, 1998.