Table of Contents Author Guidelines Submit a Manuscript
Cardiology Research and Practice
Volume 2012 (2012), Article ID 210852, 15 pages
http://dx.doi.org/10.1155/2012/210852
Review Article

Exercise and the Cardiovascular System

Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada V6T 1Z3

Received 16 December 2011; Accepted 20 February 2012

Academic Editor: Anne A. Knowlton

Copyright © 2012 Saeid Golbidi and Ismail Laher. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Third Report of the National Cholesterol Education Program (NCEP), “Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report,” Circulation, vol. 106, pp. 3143–3121, 2002. View at Google Scholar
  2. P. Clarkson, H. E. Montgomery, M. J. Mullen et al., “Exercise training enhances endothelial function in young men,” Journal of the American College of Cardiology, vol. 33, no. 5, pp. 1379–1385, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. E. J. Benjamin, M. G. Larson, M. J. Keyes et al., “Clinical correlates and heritability of flow-mediated dilation in the community: the Framingham Heart Study,” Circulation, vol. 109, no. 5, pp. 613–619, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Hambrecht, E. Fiehn, C. Weigl et al., “Regular physical exercise corrects endothelial dysfunction and improves exercise capacity in patients with chronic heart failure,” Circulation, vol. 98, no. 24, pp. 2709–2715, 1998. View at Google Scholar · View at Scopus
  5. Y. Higashi, S. Sasaki, S. Kurisu et al., “Regular aerobic exercise augments endothelium-dependent vascular relaxation in normotensive as well as hypertensive subjects: role of endothelium-derived nitric oxide,” Circulation, vol. 100, no. 11, pp. 1194–1202, 1999. View at Google Scholar · View at Scopus
  6. A. Maiorana, G. O'Driscoll, C. Cheetham et al., “The effect of combined aerobic and resistance exercise training on vascular function in type 2 diabetes,” Journal of the American College of Cardiology, vol. 38, no. 3, pp. 860–866, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Lavrenčič, B. G. Salobir, and I. Keber, “Physical training improves flow-mediated dilation in patients with the polymetabolic syndrome,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 20, no. 2, pp. 551–555, 2000. View at Google Scholar
  8. S. Gielen, S. Erbs, A. Linke, S. Möbius-Winkler, G. Schuler, and R. Hambrecht, “Home-based versus hospital-based exercise programs in patients with coronary artery disease: effects on coronary vasomotion,” American heart journal, vol. 145, no. 1, article E3, 2003. View at Google Scholar · View at Scopus
  9. M. Vona, A. Rossi, P. Capodaglio et al., “Impact of physical training and detraining on endothelium-dependent vasodilation in patients with recent acute myocardial infarction,” American Heart Journal, vol. 147, no. 6, pp. 1039–1046, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Hambrecht, L. Hilbrich, S. Erbs et al., “Correction of endothelial dysfunction in chronic heart failure: additional effects of exercise training and oral L-arginine supplementation,” Journal of the American College of Cardiology, vol. 35, no. 3, pp. 706–713, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Maiorana, G. O'Driscoll, L. Dembo, C. Goodman, R. Taylor, and D. Green, “Exercise training, vascular function, and functional capacity in middle-aged subjects,” Medicine and Science in Sports and Exercise, vol. 33, no. 12, pp. 2022–2028, 2001. View at Google Scholar · View at Scopus
  12. B. A. Franklin and M. Cushman, “Recent advances in preventive cardiology and lifestyle medicine: a Themed series,” Circulation, vol. 123, no. 20, pp. 2274–2283, 2011. View at Publisher · View at Google Scholar
  13. D. Mozaffarian, P. W. F. Wilson, and W. B. Kannel, “Beyond established and novel risk factors lifestyle risk factors for cardiovascular disease,” Circulation, vol. 117, no. 23, pp. 3031–3038, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. S. K. Powers and M. J. Jackson, “Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production,” Physiological Reviews, vol. 88, no. 4, pp. 1243–1276, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Valko, C. J. Rhodes, J. Moncol, M. Izakovic, and M. Mazur, “Free radicals, metals and antioxidants in oxidative stress-induced cancer,” Chemico-Biological Interactions, vol. 160, no. 1, pp. 1–40, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. I. Fridovich, “Fundamental aspects of reactive oxygen species, or what's the matter with oxygen?” Annals of the New York Academy of Sciences, vol. 893, pp. 13–18, 1999. View at Google Scholar · View at Scopus
  17. M. C. Gomez-Cabrera, E. Domenech, and J. Viña, “Moderate exercise is an antioxidant: upregulation of antioxidant genes by training,” Free Radical Biology and Medicine, vol. 44, no. 2, pp. 126–131, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. E. J. Calabrese and L. A. Baldwin, “Hormesis: the dose-response revolution,” Annual Review of Pharmacology and Toxicology, vol. 43, pp. 175–197, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. Z. Radak, H. Y. Chung, and S. Goto, “Exercise and hormesis: oxidative stress-related adaptation for successful aging,” Biogerontology, vol. 6, no. 1, pp. 71–75, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. L. L. Ji, M. C. Gomez-Cabrera, and J. Vina, “Exercise and hormesis: activation of cellular antioxidant signaling pathway,” Annals of the New York Academy of Sciences, vol. 1067, no. 1, pp. 425–435, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. H. A. Demirel, S. K. Powers, M. A. Zergeroglu et al., “Short-term exercise improves myocardial tolerance to in vivo ischemia-reperfusion in the rat,” Journal of Applied Physiology, vol. 91, no. 5, pp. 2205–2212, 2001. View at Google Scholar · View at Scopus
  22. N. Yamashita, S. Hoshida, K. Otsu, M. Asahi, T. Kuzuya, and M. Hori, “Exercise provides direct biphasic cardioprotection via manganese superoxide dismutase activation,” Journal of Experimental Medicine, vol. 189, no. 11, pp. 1699–1706, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. D. A. Brown, K. N. Jew, G. C. Sparagna, T. I. Musch, and R. L. Moore, “Exercise training preserves coronary flow and reduces infarct size after ischemia-reperfusion in rat heart,” Journal of Applied Physiology, vol. 95, no. 6, pp. 2510–2518, 2003. View at Google Scholar · View at Scopus
  24. J. P. French, K. L. Hamilton, J. C. Quindry, Y. Lee, P. A. Upchurch, and S. K. Powers, “Exercise-induced protection against myocardial apoptosis and necrosis: MnSOD, calcium-handling proteins, and calpain,” FASEB Journal, vol. 22, no. 8, pp. 2862–2871, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. K. L. Hamilton, J. C. Quindry, J. P. French et al., “MnSOD antisense treatment and exercise-induced protection against arrhythmias,” Free Radical Biology and Medicine, vol. 37, no. 9, pp. 1360–1368, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Gastaldelli and G. Basta, “Ectopic fat and cardiovascular disease: what is the link?” Nutrition, Metabolism and Cardiovascular Diseases, vol. 20, no. 7, pp. 481–490, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. A. M. Sironi, A. Gastaldelli, A. Mari et al., “Visceral fat in hypertension: influence on insulin resistance and β-cell function,” Hypertension, vol. 44, no. 2, pp. 127–133, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. H. S. Sacks and J. N. Fain, “Human epicardial adipose tissue: a review,” American Heart Journal, vol. 153, no. 6, pp. 907–917, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. G. Iacobellis, M. C. Ribaudo, F. Assael et al., “Echocardiographic epicardial adipose tissue is related to anthropometric and clinical parameters of metabolic syndrome: a new indicator of cardiovascular risk,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 11, pp. 5163–5168, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. J.-P. Montani, J. F. Carroll, T. M. Dwyer, V. Antic, Z. Yang, and A. G. Dulloo, “Ectopic fat storage in heart, blood vessels and kidneys in the pathogenesis of cardiovascular diseases,” International Journal of Obesity, vol. 28, supplement 4, pp. S58–S65, 2004. View at Publisher · View at Google Scholar
  31. R. Djaberi, J. D. Schuijf, J. M. van Werkhoven, G. Nucifora, J. W. Jukema, and J. J. Bax, “Relation of epicardial adipose tissue to coronary atherosclerosis,” American Journal of Cardiology, vol. 102, no. 12, pp. 1602–1607, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. T. Zhou, P. Grayburn, A. Karim et al., “Lipotoxic heart disease in obese rats: implications for human obesity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 4, pp. 1784–1789, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. L. J. Rijzewijk, R. W. van der Meer, J. W. A. Smit et al., “Myocardial steatosis is an independent predictor of diastolic dysfunction in type 2 diabetes mellitus,” Journal of the American College of Cardiology, vol. 52, no. 22, pp. 1793–1799, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. T. Mazurek, L. Zhang, A. Zalewski et al., “Human epicardial adipose tissue is a source of inflammatory mediators,” Circulation, vol. 108, no. 20, pp. 2460–2466, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. M. K. Kim, T. Tomita, M. J. Kim, H. Sasai, S. Maeda, and K. Tanaka, “Aerobic exercise training reduces epicardial fat in obese men,” Journal of Applied Physiology, vol. 106, no. 1, pp. 5–11, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Gleeson, N. C. Bishop, D. J. Stensel, M. R. Lindley, S. S. Mastana, and M. A. Nimmo, “The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease,” Nature Reviews Immunology, vol. 11, no. 9, pp. 607–615, 2011. View at Publisher · View at Google Scholar
  37. M. S. Marber, R. Mestril, S. H. Chi, M. R. Sayen, D. M. Yellon, and W. H. Dillmann, “Overexpression of the rat inducible 70-kD heat stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury,” Journal of Clinical Investigation, vol. 95, no. 4, pp. 1446–1456, 1995. View at Google Scholar · View at Scopus
  38. S. D. Guttman, C. V. C. Glover, C. D. Allis, and M. A. Gorovsky, “Heat shock, deciliation and release from anoxia induce the synthesis of the same set of polypeptides in starved T. pyriformis,” Cell, vol. 22, no. 1 I, pp. 299–307, 1980. View at Google Scholar · View at Scopus
  39. G. Weitzel, U. Pilatus, and L. Rensing, “Similar dose response of heat shock protein synthesis and intracellular pH change in yeast,” Experimental Cell Research, vol. 159, no. 1, pp. 252–256, 1985. View at Google Scholar · View at Scopus
  40. C. Adrie, C. Richter, M. Bachelet et al., “Contrasting effects of NO and peroxynitrites on HSP70 expression and apoptosis in human monocytes,” American Journal of Physiology, vol. 279, no. 2, pp. C452–C460, 2000. View at Google Scholar · View at Scopus
  41. H. L. Chiang, S. R. Terlecky, C. P. Plant, and J. F. Dice, “A role for a 70-kilodaton heat shock protein in lysosomal degradation of intracellular proteins,” Science, vol. 246, no. 4928, pp. 382–385, 1989. View at Google Scholar · View at Scopus
  42. W. J. Welch, J. I. Garrels, and G. P. Thomas, “Biochemical characterization of the mammalian stress proteins and identification of two stress proteins as glucose- and Ca2+-ionophore-regulated proteins,” Journal of Biological Chemistry, vol. 258, no. 11, pp. 7102–7111, 1983. View at Google Scholar · View at Scopus
  43. J. J. Sciandra and J. R. Subjeck, “The effects of glucose on protein synthesis and thermosensitivity in Chinese hamster ovary cells,” Journal of Biological Chemistry, vol. 258, no. 20, pp. 12091–12093, 1983. View at Google Scholar · View at Scopus
  44. S. K. Powers, M. Locke, and H. A. Demirel, “Exercise, heat shock proteins, and myocardial protection from I-R injury,” Medicine and Science in Sports and Exercise, vol. 33, no. 3, pp. 386–392, 2001. View at Google Scholar · View at Scopus
  45. J. L. Martin, R. Mestril, R. Hilal-Dandan, L. L. Brunton, and W. H. Dillmann, “Small heat shock proteins and protection against ischemic injury in cardiac myocytes,” Circulation, vol. 96, no. 12, pp. 4343–4348, 1997. View at Google Scholar · View at Scopus
  46. J. W. Starnes, A. M. Choilawala, R. P. Taylor, M. J. Nelson, and M. D. Delp, “Myocardial heat shock protein 70 expression in young and old rats after identical exercise programs,” Journals of Gerontology A, vol. 60, no. 8, pp. 963–969, 2005. View at Google Scholar · View at Scopus
  47. S. E. Logue, A. B. Gustafsson, A. Samali, and R. A. Gottlieb, “Ischemia/reperfusion injury at the intersection with cell death,” Journal of Molecular and Cellular Cardiology, vol. 38, no. 1, pp. 21–33, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Vitadello, D. Penzo, V. Petronilli et al., “Overexpression of the stress protein Grp94 reduces cardiomyocyte necrosis due to calcium overload and simulated ischemia,” The FASEB Journal, vol. 17, no. 8, pp. 923–925, 2003. View at Google Scholar · View at Scopus
  49. Z. Murlasits, Y. Lee, and S. K. Powers, “Short-term exercise does not increase ER stress protein expression in cardiac muscle,” Medicine and Science in Sports and Exercise, vol. 39, no. 9, pp. 1522–1528, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. S. Judge, Y. M. Jang, A. Smith et al., “Exercise by lifelong voluntary wheel running reduces subsarcolemmal and interfibrillar mitochondrial hydrogen peroxide production in the heart,” American Journal of Physiology, vol. 289, no. 6, pp. R1564–R1572, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Marcil, K. Bourduas, A. Ascah, and Y. Burelle, “Exercise training induces respiratory substrate-specific decrease in Ca2+-induced permeability transition pore opening in heart mitochondria,” American Journal of Physiology, vol. 290, no. 4, pp. H1549–H1557, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. A. N. Kavazis, J. M. McClung, D. A. Hood, and S. K. Powers, “Exercise induces a cardiac mitochondrial phenotype that resists apoptotic stimuli,” American Journal of Physiology, vol. 294, no. 2, pp. H928–H935, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. S. Ghosh, M. Khazaei, F. Moien-Afshari et al., “Moderate exercise attenuates caspase-3 activity, oxidative stress, and inhibits progression of diabetic renal disease in db/db mice,” American Journal of Physiology, vol. 296, no. 4, pp. F700–F708, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. P. Bianchi, O. Kunduzova, E. Masini et al., “Oxidative stress by monoamine oxidase mediates receptor-independent cardiomyocyte apoptosis by serotonin and postischemic myocardial injury,” Circulation, vol. 112, no. 21, pp. 3297–3305, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. D. Pchejetski, O. Kunduzova, A. Dayon et al., “Oxidative stress-dependent sphingosine kinase-1 inhibition mediates monoamine oxidase A-associated cardiac cell apoptosis,” Circulation Research, vol. 100, no. 1, pp. 41–49, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. A. N. Kavazis, S. Alvarez, E. Talbert, Y. Lee, and S. K. Powers, “Exercise training induces a cardioprotective phenotype and alterations in cardiac subsarcolemmal and intermyofibrillar mitochondrial proteins,” American Journal of Physiology, vol. 297, no. 1, pp. H144–H152, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. Y. V. Ladilov, B. Siegmund, and H. M. Piper, “Protection of reoxygenated cardiomyocytes against hypercontracture by inhibition of Na+/H+ exchange,” American Journal of Physiology, vol. 268, no. 4, pp. H1531–H1539, 1995. View at Google Scholar · View at Scopus
  58. H. M. Piper, Y. Abdallah, and C. Schäfer, “The first minutes of reperfusion: a window of opportunity for cardioprotection,” Cardiovascular Research, vol. 61, no. 3, pp. 365–371, 2004. View at Publisher · View at Google Scholar · View at Scopus
  59. A. Noma, “ATP-regulated K+ channels in cardiac muscle,” Nature, vol. 305, no. 5930, pp. 147–148, 1983. View at Google Scholar · View at Scopus
  60. A. P. Halestrap, “Calcium, mitochondria and reperfusion injury: a pore way to die,” Biochemical Society Transactions, vol. 34, no. 2, pp. 232–237, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. W. C. Cole, C. D. McPherson, and D. Sontag, “ATP-regulated K+ channels protect the myocardium against ischemia/reperfusion damage,” Circulation Research, vol. 69, no. 3, pp. 571–581, 1991. View at Google Scholar · View at Scopus
  62. H. L. Tan, P. Mazon, H. J. Verberne et al., “Ischaemic preconditioning delays ischaemia induced cellular electrical uncoupling in rabbit myocardium by activation of ATP sensitive potassium channels,” Cardiovascular Research, vol. 27, no. 4, pp. 644–651, 1993. View at Google Scholar · View at Scopus
  63. Z. Yao and G. J. Gross, “Activation of ATP-sensitive potassium channels lowers threshold for ischemic preconditioning in dogs,” American Journal of Physiology, vol. 267, no. 5, pp. H1888–H1894, 1994. View at Google Scholar · View at Scopus
  64. Z. Yao and G. J. Gross, “Effects of the K(ATP) channel opener bimakalim on coronary blood flow, monophasic action potential duration, and infarct size in dogs,” Circulation, vol. 89, no. 4, pp. 1769–1775, 1994. View at Google Scholar · View at Scopus
  65. G. J. Gross and J. N. Peart, “KATP channels and myocardial preconditioning: an update,” American Journal of Physiology, vol. 285, no. 3, pp. H921–H930, 2003. View at Google Scholar · View at Scopus
  66. X. Kong, J. S. Tweddell, G. J. Gross, and J. E. Baker, “Sarcolemmal and mitochondrial KATP channels mediate cardioprotection in chronically hypoxic hearts,” Journal of Molecular and Cellular Cardiology, vol. 33, no. 5, pp. 1041–1045, 2001. View at Publisher · View at Google Scholar · View at Scopus
  67. R. M. Fryer, A. K. Hsu, and G. J. Gross, “Mitochondrial KATP channel opening is important during index ischemia and following myocardial reperfusion in ischemic preconditioned rat hearts,” Journal of Molecular and Cellular Cardiology, vol. 33, no. 4, pp. 831–834, 2001. View at Publisher · View at Google Scholar · View at Scopus
  68. K. Shinmura, K. Tamaki, T. Sato, H. Ishida, and R. Bolli, “Prostacyclin attenuates oxidative damage of myocytes by opening mitochondrial ATP-sensitive K+ channels via the EP3 receptor,” American Journal of Physiology, vol. 288, no. 5, pp. H2093–H2101, 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. R. Domenech, P. Macho, H. Schwarze, and G. Sánchez, “Exercise induces early and late myocardial preconditioning in dogs,” Cardiovascular Research, vol. 55, no. 3, pp. 561–566, 2002. View at Publisher · View at Google Scholar · View at Scopus
  70. D. A. Brown, A. J. Chicco, K. N. Jew et al., “Cardioprotection afforded by chronic exercise is mediated by the sarcolemmal, and not the mitochondrial, isoform of the KATP channel in the rat,” Journal of Physiology, vol. 569, no. 3, pp. 913–924, 2005. View at Publisher · View at Google Scholar · View at Scopus
  71. J. C. Quindry, L. Schreiber, P. Hosick, J. Wrieden, J. M. Irwin, and E. Hoyt, “Mitochondrial KATP channel inhibition blunts arrhythmia protection in ischemic exercised hearts,” American Journal of Physiology, vol. 299, no. 1, pp. H175–H183, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. M. V. Cohen, C. P. Baines, and J. M. Downey, “Ischemic preconditioning: from adenosine receptor to K(ATP) channel,” Annual Review of Physiology, vol. 62, pp. 79–109, 2000. View at Publisher · View at Google Scholar · View at Scopus
  73. R. Bolli, “The late phase of preconditioning,” Circulation Research, vol. 87, no. 11, pp. 972–983, 2000. View at Google Scholar · View at Scopus
  74. H. A. Demirel, S. K. Powers, C. Caillaud et al., “Exercise training reduces myocardial lipid peroxidation following short-term ischemia-reperfusion,” Medicine and Science in Sports and Exercise, vol. 30, no. 8, pp. 1211–1216, 1998. View at Publisher · View at Google Scholar · View at Scopus
  75. A. A. Quyyumi, “Prognostic value of endothelial function,” American Journal of Cardiology, vol. 91, no. 12, pp. 19H–24H, 2003. View at Publisher · View at Google Scholar · View at Scopus
  76. M. E. Widlansky, N. Gokce, J. F. Keaney, and J. A. Vita, “The clinical implications of endothelial dysfunction,” Journal of the American College of Cardiology, vol. 42, no. 7, pp. 1149–1160, 2003. View at Publisher · View at Google Scholar · View at Scopus
  77. J. A. Vita, “Nitric oxide-dependent vasodilation in human subjects,” Methods in Enzymology, vol. 359, pp. 186–200, 2002. View at Publisher · View at Google Scholar · View at Scopus
  78. U. Landmesser and H. Drexler, “The clinical significance of endothelial dysfunction,” Current Opinion in Cardiology, vol. 20, no. 6, pp. 547–551, 2005. View at Publisher · View at Google Scholar · View at Scopus
  79. F. Perticone, R. Ceravolo, A. Pujia et al., “Prognostic significance of endothelial dysfunction in hypertensive patients,” Circulation, vol. 104, no. 2, pp. 191–196, 2001. View at Google Scholar · View at Scopus
  80. M. G. Modena, L. Bonetti, F. Coppi, F. Bursi, and R. Rossi, “Prognostic role of reversible endothelial dysfunction in hypertensive postmenopausal women,” Journal of the American College of Cardiology, vol. 40, no. 3, pp. 505–510, 2002. View at Publisher · View at Google Scholar · View at Scopus
  81. T. H. Schindler, B. Hornig, P. T. Buser et al., “Prognostic value of abnormal vasoreactivity of epicardial coronary arteries to sympathetic stimulation in patients with normal coronary angiograms,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 3, pp. 495–501, 2003. View at Publisher · View at Google Scholar · View at Scopus
  82. V. Schächinger, M. B. Britten, and A. M. Zeiher, “Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease,” Circulation, vol. 101, no. 16, pp. 1899–1906, 2000. View at Google Scholar · View at Scopus
  83. J. A. Suwaidi, S. Hamasaki, S. T. Higano, R. A. Nishimura, D. R. Holmes, and A. Lerman, “Long-term follow-up of patients with mild coronary artery disease and endothelial dysfunction,” Circulation, vol. 101, no. 9, pp. 948–954, 2000. View at Google Scholar · View at Scopus
  84. T. Neunteufl, S. Heher, R. Katzenschlager et al., “Late prognostic value of flow-mediated dilation in the brachial artery of patients with chest pain,” American Journal of Cardiology, vol. 86, no. 2, pp. 207–210, 2000. View at Publisher · View at Google Scholar · View at Scopus
  85. J. P. J. Halcox, W. H. Schenke, G. Zalos et al., “Prognostic value of coronary vascular endothelial dysfunction,” Circulation, vol. 106, no. 6, pp. 653–658, 2002. View at Publisher · View at Google Scholar · View at Scopus
  86. N. Gokce, J. F. Keaney, L. M. Hunter et al., “Predictive value of noninvasively determined endothelial dysfunction for long-term cardiovascular events in patients with peripheral vascular disease,” Journal of the American College of Cardiology, vol. 41, no. 10, pp. 1769–1775, 2003. View at Publisher · View at Google Scholar · View at Scopus
  87. A. Lerman and A. M. Zeiher, “Endothelial function: cardiac events,” Circulation, vol. 111, no. 3, pp. 363–368, 2005. View at Publisher · View at Google Scholar · View at Scopus
  88. I. Fleming and R. Busse, “Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase,” American Journal of Physiology, vol. 284, no. 1, pp. R1–R12, 2003. View at Google Scholar · View at Scopus
  89. T. Fukai, M. R. Siegfried, M. Ushio-Fukai, Y. Cheng, G. Kojda, and D. G. Harrison, “Regulation of the vascular extracellular superoxide dismutase by nitric oxide and exercise training,” Journal of Clinical Investigation, vol. 105, no. 11, pp. 1631–1639, 2000. View at Google Scholar · View at Scopus
  90. G. Kojda, Y. C. Cheng, J. Burchfield, and D. G. Harrison, “Dysfunctional regulation of endothelial nitric oxide synthase (eNOS) expression in response to exercise in mice lacking one eNOS gene,” Circulation, vol. 103, no. 23, pp. 2839–2844, 2001. View at Google Scholar · View at Scopus
  91. R. Hambrecht, V. Adams, S. Erbs et al., “Regular physical activity improves endothelial function in patients with coronary artery disease by increasing phosphorylation of endothelial nitric oxide synthase,” Circulation, vol. 107, no. 25, pp. 3152–3158, 2003. View at Publisher · View at Google Scholar · View at Scopus
  92. R. Hambrecht, A. Wolf, S. Gielen et al., “Effect of exercise on coronary endothelial function in patients with coronary artery disease,” New England Journal of Medicine, vol. 342, no. 7, pp. 454–460, 2000. View at Publisher · View at Google Scholar · View at Scopus
  93. R. Hambrecht, S. Gielen, A. Linke et al., “Effects of exercise training on left ventricular function and peripheral resistance in patients with chronic heart failure: a randomized trial,” Journal of the American Medical Association, vol. 283, no. 23, pp. 3095–3101, 2000. View at Google Scholar · View at Scopus
  94. S. Gielen, G. Schuler, and V. Adams, “Cardiovascular effects of exercise training: molecular mechanisms,” Circulation, vol. 122, no. 12, pp. 1221–1238, 2010. View at Publisher · View at Google Scholar · View at Scopus
  95. F. R. M. Laurindo, M. D. A. Pedro, H. V. Barbeiro et al., “Vascular free radical release: ex vivo and in vivo evidence for a flow-dependent endothelial mechanism,” Circulation Research, vol. 74, no. 4, pp. 700–709, 1994. View at Google Scholar · View at Scopus
  96. G. W. De Keulenaer, D. C. Chappell, N. Ishizaka, R. M. Nerem, R. Wayne Alexander, and K. K. Griendling, “Oscillatory and steady laminar shear stress differentially affect human endothelial redox state: role of a superoxide-producing NADH oxidase,” Circulation Research, vol. 82, no. 10, pp. 1094–1101, 1998. View at Google Scholar · View at Scopus
  97. G. R. Drummond, H. Cai, M. E. Davis, S. Ramasamy, and D. G. Harrison, “Transcriptional and posttranscriptional regulation of endothelial nitric oxide synthase expression by hydrogen peroxide,” Circulation Research, vol. 86, no. 3, pp. 347–354, 2000. View at Google Scholar · View at Scopus
  98. H. Cai, M. E. Davis, G. R. Drummond, and D. G. Harrison, “Induction of endothelial NO synthase by hydrogen peroxide via a Ca2+/calmodulin-dependent protein kinase II/janus kinase 2-dependent pathway,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 21, no. 10, pp. 1571–1576, 2001. View at Google Scholar · View at Scopus
  99. J. W. E. Rush, J. R. Turk, and M. H. Laughlin, “Exercise training regulates SOD-1 and oxidative stress in porcine aortic endothelium,” American Journal of Physiology, vol. 284, no. 4, pp. H1378–H1387, 2003. View at Google Scholar · View at Scopus
  100. S. Maeda, J. Sugawara, M. Yoshizawa et al., “Involvement of endothelin-1 in habitual exercise-induced increase in arterial compliance,” Acta Physiologica, vol. 196, no. 2, pp. 223–229, 2009. View at Publisher · View at Google Scholar · View at Scopus
  101. F. P. Leung, L. M. Yung, I. Laher, X. Yao, Z. Y. Chen, and Y. Huang, “Exercise, vascular wall and cardiovascular diseases: an update (part 1),” Sports Medicine, vol. 38, no. 12, pp. 1009–1024, 2008. View at Google Scholar · View at Scopus
  102. J. Rehman, J. Li, L. Parvathaneni et al., “Exercise acutely increases circulating endothelial progenitor cells and monocyte-/macrophage-derived angiogenic cells,” Journal of the American College of Cardiology, vol. 43, no. 12, pp. 2314–2318, 2004. View at Publisher · View at Google Scholar · View at Scopus
  103. B. Richter, A. Niessner, M. Penka et al., “Endurance training reduces circulating asymmetric dimethylarginine and myeloperoxidase levels in persons at risk of coronary events,” Thrombosis and Haemostasis, vol. 94, no. 6, pp. 1306–1311, 2005. View at Publisher · View at Google Scholar
  104. U. Laufs, A. Urhausen, N. Werner et al., “Running exercise of different duration and intensity: effect on endothelial progenitor cells in healthy subjects,” European Journal of Cardiovascular Prevention and Rehabilitation, vol. 12, no. 4, pp. 407–414, 2005. View at Publisher · View at Google Scholar
  105. M. S. O'Reilly, T. Boehm, Y. Shing et al., “Endostatin: an endogenous inhibitor of angiogenesis and tumor growth,” Cell, vol. 88, no. 2, pp. 277–285, 1997. View at Publisher · View at Google Scholar · View at Scopus
  106. J. Obeso, J. Weber, and R. Auerbach, “A hemangioendothelioma-derived cell line: its use as a model for the study of endothelial cell biology,” Laboratory Investigation, vol. 63, no. 2, pp. 259–269, 1990. View at Google Scholar · View at Scopus
  107. M. Ferreras, U. Felbor, T. Lenhard, B. R. Olsen, and J. M. Delaissé, “Generation and degradation of human endostatin proteins by various proteinases,” FEBS Letters, vol. 486, no. 3, pp. 247–251, 2000. View at Publisher · View at Google Scholar · View at Scopus
  108. J. Saarela, M. Rehn, A. Oikarinen, H. Autio-Harmainen, and T. Pihlajaniemi, “The short and long forms of type XVIII collagen show clear tissue specificities in their expression and location in basement membrane zones in humans,” American Journal of Pathology, vol. 153, no. 2, pp. 611–626, 1998. View at Google Scholar · View at Scopus
  109. M. Shichiri and Y. Hirata, “Antiangiogenesis signals by endostatin,” FASEB Journal, vol. 15, no. 6, pp. 1044–1053, 2001. View at Publisher · View at Google Scholar · View at Scopus
  110. L. Taddei, P. Chiarugi, L. Brogelli et al., “Inhibitory effect of full-length human endostatin on in vitro angiogenesis,” Biochemical and Biophysical Research Communications, vol. 263, no. 2, pp. 340–345, 1999. View at Publisher · View at Google Scholar
  111. K. Eriksson, P. Magnusson, J. Dixelius, L. Claesson-Welsh, and M. J. Cross, “Angiostatin and endostatin inhibit endothelial cell migration in response to FGF and VEGF without interfering with specific intracellular signal transduction pathways,” FEBS Letters, vol. 536, no. 1–3, pp. 19–24, 2003. View at Publisher · View at Google Scholar · View at Scopus
  112. J. M. Isner and D. W. Losordo, “Therapeutic angiogenesis for heart failure,” Nature Medicine, vol. 5, no. 5, pp. 491–492, 1999. View at Publisher · View at Google Scholar · View at Scopus
  113. F. L. Celletti, P. R. Hilfiker, P. Ghafouri, and M. D. Dake, “Effect of human recombinant vascular endothelial growth factor165 on progression of atherosclerotic plaque,” Journal of the American College of Cardiology, vol. 37, no. 8, pp. 2126–2130, 2001. View at Publisher · View at Google Scholar
  114. K. B. Lemström, R. Krebs, A. I. Nykänen et al., “Vascular endothelial growth factor enhances cardiac allograft arteriosclerosis,” Circulation, vol. 105, no. 21, pp. 2524–2530, 2002. View at Publisher · View at Google Scholar · View at Scopus
  115. R. S. Richardson, H. Wagner, S. R. D. Mudaliar, E. Saucedo, R. Henry, and P. D. Wagner, “Exercise adaptation attenuates VEGF gene expression in human skeletal muscle,” American Journal of Physiology, vol. 279, no. 2, pp. H772–H778, 2000. View at Google Scholar · View at Scopus
  116. J. W. Gu, G. Gadonski, J. Wang, I. Makey, and T. H. Adair, “Exercise increases endostatin in circulation of healthy volunteers,” BMC Physiology, vol. 4, article no. 1, 2004. View at Publisher · View at Google Scholar · View at Scopus
  117. K. Brixius, S. Schoenberger, D. Ladage et al., “Long-term endurance exercise decreases antiangiogenic endostatin signalling in overweight men aged 50–60 years,” British Journal of Sports Medicine, vol. 42, no. 2, pp. 126–129, 2008. View at Publisher · View at Google Scholar · View at Scopus
  118. M. D. Brown, “Exercise and coronary vascular remodelling in the healthy heart,” Experimental Physiology, vol. 88, no. 5, pp. 645–658, 2003. View at Publisher · View at Google Scholar · View at Scopus
  119. W. L. Haskell, C. Sims, J. Myll, W. M. Bortz, F. G. St. Goar F.G., and E. L. Alderman, “Coronary artery size and dilating capacity in ultradistance runners,” Circulation, vol. 87, no. 4, pp. 1076–1082, 1993. View at Google Scholar · View at Scopus
  120. H. L. Wyatt and J. Mitchell, “Influences of physical conditioning and deconditioning on coronary vasculature of dogs,” Journal of Applied Physiology Respiratory Environmental and Exercise Physiology, vol. 45, no. 4, pp. 619–625, 1978. View at Google Scholar · View at Scopus
  121. R. Belardinelli, D. Georgiou, L. Ginzton, G. Cianci, and A. Purcaro, “Effects of moderate exercise training on thallium uptake and contractile response to low-dose dobutamine of dysfunctional myocardium in patients with ischemic cardiomyopathy,” Circulation, vol. 97, no. 6, pp. 553–561, 1998. View at Google Scholar · View at Scopus
  122. D. N. Sim and W. A. Neill, “Investigation of the physiological basis for increased exercise threshold for angina pectoris after physical conditioning,” Journal of Clinical Investigation, vol. 54, no. 3, pp. 763–770, 1974. View at Google Scholar · View at Scopus
  123. S. Balducci, S. Zanuso, A. Nicolucci et al., “Anti-inflammatory effect of exercise training in subjects with type 2 diabetes and the metabolic syndrome is dependent on exercise modalities and independent of weight loss,” Nutrition, Metabolism and Cardiovascular Diseases, vol. 20, no. 8, pp. 608–617, 2010. View at Publisher · View at Google Scholar
  124. A. H. Sprague and R. A. Khalil, “Inflammatory cytokines in vascular dysfunction and vascular disease,” Biochemical Pharmacology, vol. 78, no. 6, pp. 539–552, 2009. View at Publisher · View at Google Scholar · View at Scopus
  125. S. Tiwari, Y. Zhang, J. Heller, D. R. Abernethy, and N. M. Soldatov, “Artherosclerosis-related molecular alteration of the human Ca V1.2 calcium channel α1C subunit,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 45, pp. 17024–17029, 2006. View at Publisher · View at Google Scholar · View at Scopus
  126. J. Hiroki, H. Shimokawa, M. Higashi et al., “Inflammatory stimuli upregulate Rho-kinase in human coronary vascular smooth muscle cells,” Journal of Molecular and Cellular Cardiology, vol. 37, no. 2, pp. 537–546, 2004. View at Publisher · View at Google Scholar · View at Scopus
  127. C. Zhang, Y. Park, A. Picchi, and B. J. Potter, “Maturation-induces endothelial dysfunction via vascular inflammation in diabetic mice,” Basic Research in Cardiology, vol. 103, no. 5, pp. 407–416, 2008. View at Publisher · View at Google Scholar · View at Scopus
  128. J. A. Mitchell, S. Larkin, and T. J. Williams, “Cyclooxygenase-2: regulation and relevance in inflammation,” Biochemical Pharmacology, vol. 50, no. 10, pp. 1535–1542, 1995. View at Publisher · View at Google Scholar · View at Scopus
  129. N. Erdei, Z. Bagi, I. Édes, G. Kaley, and A. Koller, “H2O2 increases production of constrictor prostaglandins in smooth muscle leading to enhanced arteriolar tone in Type 2 diabetic mice,” American Journal of Physiology, vol. 292, no. 1, pp. H649–H656, 2007. View at Publisher · View at Google Scholar · View at Scopus
  130. T. Matsumoto, M. Kakami, E. Noguchi, T. Kobayashi, and K. Kamata, “Imbalance between endothelium-derived relaxing and contracting factors in mesenteric arteries from aged OLETF rats, a model of Type 2 diabetes,” American Journal of Physiology, vol. 293, no. 3, pp. H1480–H1490, 2007. View at Publisher · View at Google Scholar · View at Scopus
  131. E. H. C. Tang, F. P. Leung, Y. Huang et al., “Calcium and reactive oxygen species increase in endothelial cells in response to releasers of endothelium-derived contracting factor,” British Journal of Pharmacology, vol. 151, no. 1, pp. 15–23, 2007. View at Publisher · View at Google Scholar · View at Scopus
  132. C. Kasapis and P. D. Thompson, “The effects of physical activity on serum C-reactive protein and inflammatory markers: a systematic review,” Journal of the American College of Cardiology, vol. 45, no. 10, pp. 1563–1569, 2005. View at Publisher · View at Google Scholar · View at Scopus
  133. E. P. Plaisance and P. W. Grandjean, “Physical activity and high-sensitivity C-reactive protein,” Sports Medicine, vol. 36, no. 5, pp. 443–458, 2006. View at Publisher · View at Google Scholar · View at Scopus
  134. K. E. Fallon, S. K. Fallon, and T. Boston, “The acute phase response and exercise: court and field sports,” British Journal of Sports Medicine, vol. 35, no. 3, pp. 170–173, 2001. View at Publisher · View at Google Scholar · View at Scopus
  135. M. L. Kohut, D. A. McCann, D. W. Russell et al., “Aerobic exercise, but not flexibility/resistance exercise, reduces serum IL-18, CRP, and IL-6 independent of β-blockers, BMI, and psychosocial factors in older adults,” Brain, Behavior, and Immunity, vol. 20, no. 3, pp. 201–209, 2006. View at Publisher · View at Google Scholar
  136. T. A. Lakka, H. M. Lakka, T. Rankinen et al., “Effect of exercise training on plasma levels of C-reactive protein in healthy adults: the HERITAGE Family Study,” European Heart Journal, vol. 26, no. 19, pp. 2018–2025, 2005. View at Publisher · View at Google Scholar · View at Scopus
  137. R. V. Milani, C. J. Lavie, and M. R. Mehra, “Reduction in C-reactive protein through cardiac rehabilitation and exercise training,” Journal of the American College of Cardiology, vol. 43, no. 6, pp. 1056–1061, 2004. View at Publisher · View at Google Scholar · View at Scopus
  138. E. S. Ford, “Does exercise reduce inflammation? Physical activity and C-reactive protein among U.S. adults,” Epidemiology, vol. 13, no. 5, pp. 561–568, 2002. View at Google Scholar · View at Scopus
  139. M. R. Bonsignore, G. Morici, A. Santoro et al., “Circulating hematopoietic progenitor cells in runners,” Journal of Applied Physiology, vol. 93, no. 5, pp. 1691–1697, 2002. View at Google Scholar · View at Scopus
  140. S. Steiner, A. Niessner, S. Ziegler et al., “Endurance training increases the number of endothelial progenitor cells in patients with cardiovascular risk and coronary artery disease,” Atherosclerosis, vol. 181, no. 2, pp. 305–310, 2005. View at Publisher · View at Google Scholar · View at Scopus
  141. G. Morici, D. Zangla, A. Santoro et al., “Supramaximal exercise mobilizes hematopoietic progenitors and reticulocytes in athletes,” American Journal of Physiology, vol. 289, no. 5, pp. R1496–R1503, 2005. View at Publisher · View at Google Scholar
  142. G. G. Wardyn, S. I. Rennard, S. K. Brusnahan et al., “Effects of exercise on hematological parameters, circulating side population cells, and cytokines,” Experimental Hematology, vol. 36, no. 2, pp. 216–223, 2008. View at Publisher · View at Google Scholar · View at Scopus
  143. O. K. Baskurt, M. Boynard, G. C. Cokelet et al., “New guidelines for hemorheological laboratory techniques,” Clinical Hemorheology and Microcirculation, vol. 42, no. 2, pp. 75–97, 2009. View at Publisher · View at Google Scholar
  144. R. S. Ajmani, J. L. Fleg, A. A. Demehin et al., “Oxidative stress and hemorheological changes induced by acute treadmill exercise,” Clinical Hemorheology and Microcirculation, vol. 28, no. 1, pp. 29–40, 2003. View at Google Scholar
  145. J. F. Brun, J. P. Micallef, and A. Orsetti, “Hemorheologic effects of light prolonged exercise,” Clinical Hemorheology, vol. 14, no. 6, pp. 807–818, 1994. View at Google Scholar · View at Scopus
  146. W. H. Reinhart, M. Staubli, and P. W. Straub, “Impaired red cel filterability with elimination of old red blood cells during a 100-km race,” Journal of Applied Physiology, vol. 54, no. 3, pp. 827–830, 1983. View at Google Scholar
  147. J. F. Brun, M. Sekkar, C. Lagoueyte, C. Fedou, and A. Orsetti, “Relationship between fitness and blood viscosity in untrained normal short children,” Clinical Hemorheology, vol. 9, no. 6, pp. 953–963, 1989. View at Google Scholar
  148. M. S. El-Sayed, N. Ali, and Z. E. S. Ali, “Haemorheology in exercise and training,” Sports Medicine, vol. 35, no. 8, pp. 649–670, 2005. View at Publisher · View at Google Scholar · View at Scopus
  149. J. A. De Paz, J. Lasierra, J. G. Villa, E. Vilades, M. A. Martin-Nuno, and J. Gonzalez-Gallego, “Changes in the fibrinolytic system associated with physical conditioning,” European Journal of Applied Physiology and Occupational Physiology, vol. 65, no. 5, pp. 388–393, 1992. View at Publisher · View at Google Scholar · View at Scopus
  150. G. Lippi and N. Maffulli, “Biological influence of physical exercise on hemostasis,” Seminars in Thrombosis and Hemostasis, vol. 35, no. 3, pp. 269–276, 2009. View at Publisher · View at Google Scholar
  151. J.-S. Wang, C. J. Jen, and H.-I. Chen, “Effects of exercise training and deconditioning on platelet function in men,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 15, no. 10, pp. 1668–1674, 1995. View at Google Scholar
  152. J. S. Wang, C. J. Jen, and H. I. Chen, “Effects of chronic exercise and deconditioning on platelet function in women,” Journal of Applied Physiology, vol. 83, no. 6, pp. 2080–2085, 1997. View at Google Scholar · View at Scopus
  153. C. A. Macera, J. M. Hootman, and J. E. Sniezek, “Major public health benefits of physical activity,” Arthritis Care and Research, vol. 49, no. 1, pp. 122–128, 2003. View at Google Scholar · View at Scopus
  154. C. A. Macera and K. E. Powell, “Population attributable risk: implications of physical activity dose,” Medicine and Science in Sports and Exercise, vol. 33, no. 6, pp. S635–S639, 2001. View at Google Scholar · View at Scopus
  155. J. Myers, A. Kaykha, S. George et al., “Fitness versus physical activity patterns in predicting mortality in men,” American Journal of Medicine, vol. 117, no. 12, pp. 912–918, 2004. View at Publisher · View at Google Scholar · View at Scopus
  156. S. N. Blair, H. W. Kohl, R. S. Paffenbarger, D. G. Clark, K. H. Cooper, and L. W. Gibbons, “Physical fitness and all-cause mortality: a prospective study of healthy men and women,” Journal of the American Medical Association, vol. 262, no. 17, pp. 2395–2401, 1989. View at Google Scholar · View at Scopus
  157. I.-M. Lee and P. J. Skerrett, “Physical activity and all-cause mortality: what is the dose-response relation?” Medicine and Science in Sports and Exercise, vol. 33, no. 6, pp. S459–S471, 2001. View at Google Scholar
  158. R. S. Paffenbarger Jr., R. T. Hyde, A. L. Wing, and C. C. Hsieh, “Physical activity, all-cause mortality, and longevity of college alumni,” New England Journal of Medicine, vol. 314, no. 10, pp. 605–613, 1986. View at Google Scholar · View at Scopus
  159. R. S. Paffenbarger Jr., R. T. Hyde, A. L. Wing, I. M. Lee, D. L. Jung, and J. B. Kampert, “The association of changes in physical-activity level and other lifestyle characteristics with mortality among men,” New England Journal of Medicine, vol. 328, no. 8, pp. 538–545, 1993. View at Publisher · View at Google Scholar · View at Scopus
  160. L. H. Kushi, R. M. Fee, A. R. Folsom, P. J. Mink, K. E. Anderson, and T. A. Sellers, “Physical activity and mortality in postmenopausal women,” Journal of the American Medical Association, vol. 277, no. 16, pp. 1287–1292, 1997. View at Google Scholar · View at Scopus
  161. A. S. Leon, J. Connett, D. R. Jacobs, and R. Rauramaa, “Leisure-time physical activity levels and risk of coronary heart disease and death. The multiple risk factor intervention trial,” Journal of the American Medical Association, vol. 258, no. 17, pp. 2388–2395, 1987. View at Google Scholar · View at Scopus
  162. Y. Oguma and T. Shinoda-Tagawa, “Physical activity decreases cardiovascular disease risk in women: review and meta-analysis,” American Journal of Preventive Medicine, vol. 26, no. 5, pp. 407–418, 2004. View at Publisher · View at Google Scholar · View at Scopus
  163. H. Zheng, M. Luo, Y. Shen, and H. Fang, “Improved left ventricular diastolic function with exercise training in hypertension: a Doppler imaging study,” Rehabilitation Research and Practice, vol. 2011, Article ID 497690, 6 pages, 2011. View at Publisher · View at Google Scholar
  164. A. J. Alves, F. Ribeiro, E. Goldhammer et al., “Exercise training improves diastolic function in heart failure patients,” Medicine & Science in Sports & Exercise, vol. 44, no. 5, pp. 776–785, 2012. View at Publisher · View at Google Scholar
  165. I. Stessman-Lande, J. M. Jacobs, D. Gilon, and D. Leibowitz, “Physical activity and cardiac function in the oldest old,” Rejuvenation Research, vol. 15, no. 1, pp. 32–40, 2012. View at Publisher · View at Google Scholar
  166. F. Edelmann, G. Gelbrich, H.-D. Dngen et al., “Exercise training improves exercise capacity and diastolic function in patients with heart failure with preserved ejection fraction: results of the Ex-DHF (exercise training in diastolic heart failure) pilot study,” Journal of the American College of Cardiology, vol. 58, no. 17, pp. 1780–1791, 2011. View at Publisher · View at Google Scholar
  167. C. P. Earnest, S. N. Blair, and T. S. Church, “Heart rate variability and exercise in aging women,” Journal of Women's Health, vol. 21, no. 17, pp. 334–339, 2012. View at Google Scholar
  168. G. Grizzo Cucato, C. L. de Moraes Forjaz, H. Kanegusuku et al., “Effects of walking and strength training on resting and exercise cardiovascular responses in patients with intermittent claudication,” Vasa, vol. 40, no. 5, pp. 390–397, 2011. View at Publisher · View at Google Scholar
  169. M.-Y. M. Su, B.-C. Lee, H.-Y. Yu, Y.-W. Wu, W.-C. Chu, and W.-Y. I. Tseng, “Exercise training increases myocardial perfusion in residual viable myocardium within infarct zone,” Journal of Magnetic Resonance Imaging, vol. 34, no. 1, pp. 60–68, 2011. View at Publisher · View at Google Scholar
  170. T. Okamoto, M. Masuhara, and K. Ikuta, “Effect of low-intensity resistance training on arterial function,” European Journal of Applied Physiology, vol. 111, no. 5, pp. 743–748, 2011. View at Publisher · View at Google Scholar
  171. S. Okada, A. Hiuge, H. Makino et al., “Effect of exercise intervention on endothelial function and incidence of cardiovascular disease in patients with type 2 diabetes,” Journal of Atherosclerosis and Thrombosis, vol. 17, no. 8, pp. 828–833, 2010. View at Google Scholar
  172. S. Erbs, R. Höllriegel, A. Linke et al., “Exercise training in patients with advanced chronic heart failure (NYHA IIIb) promotes restoration of peripheral vasomotor function, induction of endogenous regeneration, and improvement of left ventricular function,” Circulation: Heart Failure, vol. 3, no. 4, pp. 486–494, 2010. View at Publisher · View at Google Scholar · View at Scopus
  173. E. G. Ciolac, E. A. Bocchi, L. A. Bortolotto, V. O. Carvalho, J. M. D. Greve, and G. V. Guimarães, “Effects of high-intensity aerobic interval training vs. moderate exercise on hemodynamic, metabolic and neuro-humoral abnormalities of young normotensive women at high familial risk for hypertension,” Hypertension Research, vol. 33, no. 8, pp. 836–843, 2010. View at Publisher · View at Google Scholar · View at Scopus
  174. N. J. Farpour-Lambert, Y. Aggoun, L. M. Marchand, X. E. Martin, F. R. Herrmann, and M. Beghetti, “Physical activity reduces systemic blood pressure and improves early markers of atherosclerosis in pre-pubertal obese children,” Journal of the American College of Cardiology, vol. 54, no. 25, pp. 2396–2406, 2009. View at Publisher · View at Google Scholar · View at Scopus