Table of Contents Author Guidelines Submit a Manuscript
Erratum

An erratum for this article has been published. To view the erratum, please click here.

Cardiology Research and Practice
Volume 2012, Article ID 240497, 11 pages
http://dx.doi.org/10.1155/2012/240497
Review Article

Myocardial Restoration: Is It the Cell or the Architecture or Both?

1Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
2National University Health System, Department of Cardiac, Thoracic and Vascular Surgery, 1E Lower Kent Ridge Road, NUHS Tower Block, Level 8, Singapore 119228

Received 2 July 2011; Accepted 28 October 2011

Academic Editor: Marco Metra

Copyright © 2012 Duc Thang Vu and Theo Kofidis. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Lloyd-Jones, R. J. Adams, T. M. Brown et al., “Executive summary: heart disease and stroke statistics—2010 update: a report from the American Heart Association,” Circulation, vol. 121, no. 7, pp. e46–e215, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Jopling, E. Sleep, M. Raya, M. Martí, A. Raya, and J. C. I. Belmonte, “Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation,” Nature, vol. 464, no. 7288, pp. 606–609, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. B. A. Boilson, E. Raichlin, S. J. Park, and S. S. Kushwaha, “Device therapy and cardiac transplantation for end-stage heart failure,” Current Problems in Cardiology, vol. 35, no. 1, pp. 8–64, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. W. H. Zimmermann, “Remuscularizing failing hearts with tissue engineered myocardium,” Antioxidants & Redox Signaling, vol. 11, no. 8, pp. 2011–2023, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Menasche, O. Alfieri, S. Janssens et al., “The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation,” Circulation, vol. 117, no. 9, pp. 1189–1200, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. Q. T. Bui, Z. M. Gertz, and R. L. Wilensky, “Intracoronary delivery of bone-marrow-derived stem cells,” Stem Cell Research & Therapy, vol. 1, no. 4, p. 29, 2010. View at Google Scholar
  7. J. Leor, Y. Amsalem, and S. Cohen, “Cells, scaffolds, and molecules for myocardial tissue engineering,” Pharmacology & Therapeutics, vol. 105, no. 2, pp. 151–163, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Kofidis, “Alternative cardiac therapies: stem cells and tissue engineering for the heart,” CTSNet, 2006.
  9. G. D. Buckberg, “Basic science review: the helix and the heart,” The Journal of Thoracic and Cardiovascular Surgery, vol. 124, no. 5, pp. 863–883, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. W. B. R. Mill, M. R. Anderson, and R. Hi, “Surgical anatomy of the heart,” in Surgery in the Adult, L. Cohn, Ed., pp. 29–50, McGraw-Hill, New York, NY, USA, 3 edition, 2008. View at Google Scholar
  11. G. Ertl, P. Gaudran, S. Neubauer et al., “Cardiac dysfunction and development of heart failure,” European Heart Journal, vol. 14, supplement A, pp. 33–37, 1993. View at Google Scholar · View at Scopus
  12. J. N. Cohn, R. Ferrari, and N. Sharpe, “Cardiac remodeling—concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling,” Journal of the American College of Cardiology, vol. 35, no. 3, pp. 569–582, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. J. E. Udelson and M. A. Konstam, “Relation between left ventricular remodeling and clinical outcomes in heart failure patients with left ventricular systolic dysfunction,” Journal of Cardiac Failure, vol. 8, no. 6, supplement, pp. S465–S471, 2002. View at Google Scholar
  14. E. Martin-Rendon, S. J. Brunskill, C. J. Hyde, S. J. Stanworth, A. Mathur, and S. M. Watt, “Autologous bone marrow stem cells to treat acute myocardial infarction: a systematic review,” European Heart Journal, vol. 29, no. 15, pp. 1807–1818, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. B. Assmus, A. Rolf, S. Erbs et al., “Clinical outcome 2 years after intracoronary administration of bone marrow-derived progenitor cells in acute myocardial infarction,” Circulation: Heart Failure, vol. 3, no. 1, pp. 89–96, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. A. M. van der Laan, A. Hirsch, R. Nijveldt et al., “Bone marrow cell therapy after acute myocardial infarction: the HEBE trial in perspective, first results,” Netherlands Heart Journal, vol. 16, no. 12, pp. 436–439, 2008. View at Google Scholar · View at Scopus
  17. S. Mansour, M. Vanderheyden, B. De Bruyne et al., “Intracoronary delivery of hematopoietic bone marrow stem cells and luminal loss of the infarct-related artery in patients with recent myocardial infarction,” Journal of the American College of Cardiology, vol. 47, no. 8, pp. 1727–1730, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Steinwender, R. Hofmann, A. Kypta et al., “In-stent restenosis in bare metal stents versus sirolimus-eluting stents after primary coronary intervention for acute myocardial infarction and subsequent transcoronary transplantation of autologous stem cells,” Clinical Cardiology, vol. 31, no. 8, pp. 356–359, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. D. A. Taylor, B. Z. Atkins, P. Hungspreugs et al., “Regenerating functional myocardium: improved performance after skeletal myoblast transplantation,” Nature Medicine, vol. 4, no. 8, pp. 929–933, 1998. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Herrerosa, F. Prósper, A. Perez et al., “Autologous intramyocardial injection of cultured skeletal muscle-derived stem cells in patients with non-acute myocardial infarction,” European Heart Journal, vol. 24, no. 22, pp. 2012–2020, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. M. R. Abraham, C. A. Henrikson, L. Tung et al., “Antiarrhythmic engineering of skeletal myoblasts for cardiac transplantation,” Circulation Research, vol. 97, no. 2, pp. 159–167, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Leor, M. Patterson, M. J. Quinones, L. H. Kedes, and R. A. Kloner, “Transplantation of fetal myocardial tissue into the infarcted myocardium of rat: a potential method for repair of infarcted myocardium?” Circulation, vol. 94, no. 9, supplement, pp. II332–II336, 1996. View at Google Scholar · View at Scopus
  23. K. B. S. Pasumarthi and L. J. Field, “Cardiomyocyte cell cycle regulation,” Circulation Research, vol. 90, no. 10, pp. 1044–1054, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. V. Di Stefano, M. Giacca, M. C. Capogrossi, M. Crescenzi, and F. Martelli, “Knockdown of cyclin-dependent kinase inhibitors induces cardiomyocyte re-entry in the cell cycle,” The Journal of Biological Chemistry, vol. 286, no. 10, pp. 8644–8654, 2011. View at Publisher · View at Google Scholar
  25. A. P. Beltrami, K. Urbanek, J. Kajstura et al., “Evidence that human cardiac myocytes divide after myocardial infarction,” The New England Journal of Medicine, vol. 344, no. 23, pp. 1750–1757, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. X. L. Tang, G. Rokosh, S. K. Sanganalmath et al., “Intracoronary administration of cardiac progenitor cells alleviates left ventricular dysfunction in rats with a 30-day-old infarction,” Circulation, vol. 121, no. 2, pp. 293–305, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Maxeiner, N. Krehbiehl, A. Müller et al., “New insights into paracrine mechanisms of human cardiac progenitor cells,” European Journal of Heart Failure, vol. 12, no. 7, pp. 730–737, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. K. R. Boheler, J. Czyz, D. Tweedie, H. T. Yang, S. V. Anisimov, and A. M. Wobus, “Differentiation of pluripotent embryonic stem cells into cardiomyocytes,” Circulation Research, vol. 91, no. 3, pp. 189–201, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. O. Caspi, I. Huber, I. Kehat et al., “Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts,” Journal of the American College of Cardiology, vol. 50, no. 19, pp. 1884–1893, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. G. Blin, D. Nury, S. Stefanovic et al., “A purified population of multipotent cardiovascular progenitors derived from primate pluripotent stem cells engrafts in postmyocardial infarcted nonhuman primates,” Journal of Clinical Investigation, vol. 120, no. 4, pp. 1125–1139, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Vidarsson, J. Hyllner, and P. Sartipy, “Differentiation of human embryonic stem cells to cardiomyocytes for in vitro and in vivo applications,” Stem Cell Reviews and Reports, vol. 6, no. 1, pp. 108–120, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Kucia, R. Reca, F. R. Campbell et al., “A population of very small embryonic-like (VSEL) CXCR4+ SSEA-1+Oct-4+ stem cells identified in adult bone marrow,” Leukemia, vol. 20, no. 5, pp. 857–869, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. E. K. Zuba-Surma, Y. Guo, H. Taher et al., “Transplantation of expanded bone marrow-derived very small embryonic-like stem cells (VSEL-SCs) improves left ventricular function and remodelling after myocardial infarction,” Journal of Cellular and Molecular Medicine, vol. 15, no. 6, pp. 1319–1328, 2011. View at Publisher · View at Google Scholar
  34. K. Takahashi and S. Yamanaka, “Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors,” Cell, vol. 126, no. 4, pp. 663–676, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. D. Orlic, J. Kajstura, S. Chimenti et al., “Bone marrow cells regenerate infarcted myocardium,” Nature, vol. 410, no. 6829, pp. 701–705, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. Y. Miyahara, N. Nagaya, M. Kataoka et al., “Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction,” Nature Medicine, vol. 12, no. 4, pp. 459–465, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. L. B. Balsam, A. J. Wagers, J. L. Christensen, T. Kofidis, I. L. Weissmann, and R. C. Robbins, “Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium,” Nature, vol. 428, no. 6983, pp. 668–673, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Abdel-Latif, R. Bolli, I. M. Tleyjeh et al., “Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis,” Archives of Internal Medicine, vol. 167, no. 10, pp. 989–997, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. A. P. Beltrami, L. Barlucchi, D. Torella et al., “Adult cardiac stem cells are multipotent and support myocardial regeneration,” Cell, vol. 114, no. 6, pp. 763–776, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. A. I. Caplan and J. E. Dennis, “Mesenchymal stem cells as trophic mediators,” Journal of Cellular Biochemistry, vol. 98, no. 5, pp. 1076–1084, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Jain, H. DerSimonian, D. A. Brenner et al., “Cell therapy attenuates deleterious ventricular remodeling and improves cardiac performance after myocardial infarction,” Circulation, vol. 103, no. 14, pp. 1920–1927, 2001. View at Google Scholar · View at Scopus
  42. S. Ghostine, C. Carrion, L. C. G. Souza et al., “Long-term efficacy of myoblast transplantation on regional structure and function after myocardial infarction,” Circulation, vol. 106, no. 12, supplement 1, pp. I131–I136, 2002. View at Google Scholar
  43. Y. Sawa, “Myocardial regeneration for heart failure,” Nippon Rinsho, vol. 68, no. 4, pp. 719–725, 2010. View at Google Scholar · View at Scopus
  44. M. A. Laflamme, S. Zbinden, S. E. Epstein, and C. E. Murry, “Cell-based therapy for myocardial ischemia and infarction: pathophysiological mechanisms,” Annual Review of Pathology, vol. 2, pp. 307–339, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. V. F. M. Segers and R. T. Lee, “Stem-cell therapy for cardiac disease,” Nature, vol. 451, no. 7181, pp. 937–942, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Mathieu, J. Bartunek, B. El Oumeiri et al., “Cell therapy with autologous bone marrow mononuclear stem cells is associated with superior cardiac recovery compared with use of nonmodified mesenchymal stem cells in a canine model of chronic myocardial infarction,” The Journal of Thoracic and Cardiovascular Surgery, vol. 138, no. 3, pp. 646–653, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. J. Makela, K. Ylitalo, S. Lehtonen et al., “Bone marrow-derived mononuclear cell transplantation improves myocardial recovery by enhancing cellular recruitment and differentiation at the infarction site,” The Journal of Thoracic and Cardiovascular Surgery, vol. 134, no. 3, pp. 565–573, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. E. C. Perin, G. V. Silva, T. D. Henry et al., “A randomized study of transendocardial injection of autologous bone marrow mononuclear cells and cell function analysis in ischemic heart failure (FOCUS-HF),” American Heart Journal, vol. 161, no. 6, pp. 1078–1087, 2011. View at Publisher · View at Google Scholar
  49. J. Feygin, A. Mansoor, P. Eckman, C. Swingen, and J. Zhang, “Functional and bioenergetic modulations in the infarct border zone following autologous mesenchymal stem cell transplantation,” American Journal of Physiology, vol. 293, no. 3, pp. H1772–H1780, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. Y. Amsalem, Y. Mardor, M. S. Feinberg et al., “Iron-oxide labeling and outcome of transplanted mesenchymal stem cells in the infarcted myocardium,” Circulation, vol. 116, no. 11, supplement, pp. I38–I45, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. S. L. Chen, W. W. Fang, J. Qian et al., “Improvement of cardiac function after transplantation of autologous bone marrow mesenchymal stem cells in patients with acute myocardial infarction,” Chinese Medical Journal, vol. 117, no. 10, pp. 1443–1448, 2004. View at Google Scholar · View at Scopus
  52. B. Dawn, S. Tiwari, M. J. Kucia et al., “Transplantation of bone marrow-derived very small embryonic-like stem cells attenuates left ventricular dysfunction and remodeling after myocardial infarction,” Stem Cells, vol. 26, no. 6, pp. 1646–1655, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. C. Mauritz, A. Martens, S. V. Rojas et al., “Induced pluripotent stem cell (iPSC)-derived Flk-1 progenitor cells engraft, differentiate, and improve heart function in a mouse model of acute myocardial infarction,” European Heart Journal, vol. 32, no. 21, pp. 2634–2641, 2011. View at Google Scholar
  54. H. Q. Ly, K. Hoshino, I. Pomerantseva et al., “In vivo myocardial distribution of multipotent progenitor cells following intracoronary delivery in a swine model of myocardial infarction,” European Heart Journal, vol. 30, no. 23, pp. 2861–2868, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Aicher, W. Brenner, M. Zuhayra et al., “Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling,” Circulation, vol. 107, no. 16, pp. 2134–2139, 2003. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Hofmann, K. C. Wollert, G. P. Meyer et al., “Monitoring of bone marrow cell homing into the infarcted human myocardium,” Circulation, vol. 111, no. 17, pp. 2198–2202, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. K. Cheng, T. S. Li, K. Malliaras, D. R. Davis, Y. Zhang, and E. Marbán, “Magnetic targeting enhances engraftment and functional benefit of iron-labeled cardiosphere-derived cells in myocardial infarction,” Circulation Research, vol. 106, no. 10, pp. 1570–1581, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Zhang, D. Methot, V. Poppa, Y. Fujio, K. Walsh, and C. E. Murry, “Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies,” Journal of Molecular and Cellular Cardiology, vol. 33, no. 5, pp. 907–921, 2001. View at Publisher · View at Google Scholar · View at Scopus
  59. T. E. Robey, M. K. Saiget, H. Reinecke, and C. E. Murry, “Systems approaches to preventing transplanted cell death in cardiac repair,” Journal of Molecular and Cellular Cardiology, vol. 45, no. 4, pp. 567–581, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. J. Wöhrle, N. Merkle, V. Mailänder et al., “Results of intracoronary stem cell therapy after acute myocardial infarction,” The American Journal of Cardiology, vol. 105, no. 6, pp. 804–812, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. R. Gaetani, L. Barile, E. Forte et al., “New perspectives to repair a broken heart,” Cardiovascular & Hematological Agents in Medicinal Chemistry, vol. 7, no. 2, pp. 91–107, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. A. Kawamoto, H. Iwasaki, K. Kusano et al., “CD34-positive cells exhibit increased potency and safety for therapeutic neovascularization after myocardial infarction compared with total mononuclear cells,” Circulation, vol. 114, no. 20, pp. 2163–2169, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. H. M. Klein, A. Ghodsizad, R. Marktanner et al., “Intramyocardial implantation of CD133+ stem cells improved cardiac function without bypass surgery,” The Heart Surgery Forum, vol. 10, no. 1, pp. E66–E69, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. D. S. Adler, H. Lazarus, R. Nair et al., “Safety and efficacy of bone marrow-derived autologous CD133+ stem cell therapy,” Frontiers in Bioscience, vol. 3, pp. 506–514, 2011. View at Google Scholar
  65. Y. Wang, H. K. Haider, N. Ahmad, M. Xu, R. Ge, and M. Ashraf, “Combining pharmacological mobilization with intramyocardial delivery ofbone marrow cells over-expressing VEGF is more effective forcardiac repair,” Journal of Molecular and Cellular Cardiology, vol. 40, no. 5, pp. 736–745, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. M. Gnecchi, H. He, N. Noiseux et al., “Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement,” The FASEB Journal, vol. 20, no. 6, pp. 661–669, 2006. View at Publisher · View at Google Scholar · View at Scopus
  67. B. Krausgrill, M. Vantler, V. Burst et al., “Influence of cell treatment with PDGF-BB and reperfusion on cardiac persistence of mononuclear and mesenchymal bone marrow cells after transplantation into acute myocardial infarction in rats,” Cell Transplantation, vol. 18, no. 8, pp. 847–853, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. S. Fernandes, A. V. Naumova, W. Z. Zhu, M. A. Laflamme, J. Gold, and C. E. Murry, “Human embryonic stem cell-derived cardiomyocytes engraft but do not alter cardiac remodeling after chronic infarction in rats,” Journal of Molecular and Cellular Cardiology, vol. 49, no. 6, pp. 941–949, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. J. Meluzin, J. Mayer, L. Groch et al., “Autologous transplantation of mononuclear bone marrow cells in patients with acute myocardial infarction: the effect of the dose of transplanted cells on myocardial function,” American Heart Journal, vol. 152, no. 5, pp. 975.e9–975.e15, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. R. Gaetani, G. Rizzitelli, I. Chimenti et al., “Cardiospheres and tissue engineering for myocardial regeneration: potential for clinical application,” Journal of Cellular and Molecular Medicine, vol. 14, no. 5, pp. 1071–1077, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. J. Leor, S. Aboulafia-Etzion, A. Dar et al., “Bioengineered cardiac grafts: a new approach to repair the infarcted myocardium?” Circulation, vol. 102, no. 19, supplement 3, pp. III56–III61, 2000. View at Google Scholar · View at Scopus
  72. W. H. Zimmermann, K. Schneiderbanger, P. Schubert et al., “Tissue engineering of a differentiated cardiac muscle construct,” Circulation Research, vol. 90, no. 2, pp. 223–230, 2002. View at Publisher · View at Google Scholar · View at Scopus
  73. W. H. Zimmermann, I. Melnychenko, G. Wasmeier et al., “Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts,” Nature Medicine, vol. 12, no. 4, pp. 452–458, 2006. View at Publisher · View at Google Scholar · View at Scopus
  74. T. Shimizu, M. Yamato, A. Kikuchi, and T. Okano, “Cell sheet engineering for myocardial tissue reconstruction,” Biomaterials, vol. 24, no. 13, pp. 2309–2316, 2003. View at Publisher · View at Google Scholar · View at Scopus
  75. T. Shimizu, H. Sekine, M. Yamato, and T. Okano, “Cell sheet-based myocardial tissue engineering: new hope for damaged heart rescue,” Current Pharmaceutical Design, vol. 15, no. 24, pp. 2807–2814, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. T. Shimizu, H. Sekine, Y. Isoi, M. Yamato, A. Kikuchi, and T. Okano, “Long-term survival and growth of pulsatile myocardial tissue grafts engineered by the layering of cardiomyocyte sheets,” Tissue Engineering, vol. 12, no. 3, pp. 499–507, 2006. View at Google Scholar · View at Scopus
  77. T. Ozawa, D. A. G. Mickle, R. D. Weisel et al., “Histologic changes of nonbiodegradable and biodegradable biomaterials used to repair right ventricular heart defects in rats,” The Journal of Thoracic and Cardiovascular Surgery, vol. 124, no. 6, pp. 1157–1164, 2002. View at Publisher · View at Google Scholar · View at Scopus
  78. K. A. Robinson, J. Li, M. Mathison et al., “Extracellular matrix scaffold for cardiac repair,” Circulation, vol. 112, no. 9, supplement, pp. I135–I143, 2005. View at Publisher · View at Google Scholar · View at Scopus
  79. T. Kofidis, D. R. Lebl, E. C. Martinez, G. Hoyt, M. Tanaka, and R. C. Robbins, “Novel injectable bioartificial tissue facilitates targeted, less invasive, large-scale tissue restoration on the beating heart after myocardial injury,” Circulation, vol. 112, no. 9, supplement, pp. I173–I177, 2005. View at Google Scholar
  80. J. M. Singelyn, J. A. DeQuach, S. B. Seif-Naraghi, R. B. Littlefield, P. J. Schup-Magoffin, and K. L. Christman, “Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering,” Biomaterials, vol. 30, no. 29, pp. 5409–5416, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. J. M. Singelyn and K. L. Christman, “Modulation of material properties of a decellularized myocardial matrix scaffold,” Journal of Macromolecular Bioscience, vol. 11, no. 6, pp. 731–738, 2011. View at Google Scholar
  82. Y. Miyagi, F. Zeng, X. P. Huang et al., “Surgical ventricular restoration with a cell- and cytokine-seeded biodegradable scaffold,” Biomaterials, vol. 31, no. 30, pp. 7684–7694, 2010. View at Publisher · View at Google Scholar · View at Scopus
  83. H. C. Ott, T. S. Matthiesen, S. K. Goh et al., “Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart,” Nature Medicine, vol. 14, no. 2, pp. 213–221, 2008. View at Publisher · View at Google Scholar · View at Scopus
  84. A. N. Morritt, S. K. Bortolotto, R. J. Dilley et al., “Cardiac tissue engineering in an in vivo vascularized chamber,” Circulation, vol. 115, no. 3, pp. 353–360, 2007. View at Publisher · View at Google Scholar · View at Scopus
  85. M. Radisic, H. Park, T. P. Martens et al., “Pre-treatment of synthetic elastomeric scaffolds by cardiac fibroblasts improves engineered heart tissue,” Journal of Biomedical Materials Research A, vol. 86, no. 3, pp. 713–724, 2008. View at Publisher · View at Google Scholar · View at Scopus
  86. R. K. Iyer, L. L. Y. Chiu, and M. Radisic, “Microfabricated poly(ethylene glycol) templates enable rapid screening of triculture conditions for cardiac tissue engineering,” Journal of Biomedical Materials Research A, vol. 89, no. 3, pp. 616–631, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. E. C. Martinez, J. Wang, S. U. Gan, R. Singh, C. N. Lee, and T. Kofidis, “Ascorbic acid improves embryonic cardiomyoblast cell survival and promotes vascularization in potential myocardial grafts in vivo,” Tissue Engineering A, vol. 16, no. 4, pp. 1349–1361, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. T. Sasagawa, T. Shimizu, S. Sekiya et al., “Design of prevascularized three-dimensional cell-dense tissues using a cell sheet stacking manipulation technology,” Biomaterials, vol. 31, no. 7, pp. 1646–1654, 2010. View at Publisher · View at Google Scholar · View at Scopus
  89. T. Dvir, A. Kedem, E. Ruvinov et al., “Prevascularization of cardiac patch on the omentum improves its therapeutic outcome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 35, pp. 14990–14995, 2009. View at Publisher · View at Google Scholar · View at Scopus
  90. R. Suzuki, F. Hattori, Y. Itabashi et al., “Omentopexy enhances graft function in myocardial cell sheet transplantation,” Biochemical and Biophysical Research Communications, vol. 387, no. 2, pp. 353–359, 2009. View at Publisher · View at Google Scholar · View at Scopus
  91. T. Kofidis, A. Lenz, J. Boublik et al., “Pulsatile perfusion and cardiomyocyte viability in a solid three-dimensional matrix,” Biomaterials, vol. 24, no. 27, pp. 5009–5014, 2003. View at Publisher · View at Google Scholar · View at Scopus
  92. J. R. Frederick, J. R. Fitzpatrick III, R. C. McCormick et al., “Stromal cell-derived factor-1α activation of tissue-engineered endothelial progenitor cell matrix enhances ventricular function after myocardial infarction by inducing neovasculogenesis,” Circulation, vol. 122, no. 11, supplement, pp. S107–S117, 2010. View at Publisher · View at Google Scholar · View at Scopus
  93. S. Miyagawa, A. Saito, T. Sakaguchi et al., “Impaired myocardium regeneration with skeletal cell sheets—a preclinical trial for tissue-engineered regeneration therapy,” Transplantation, vol. 90, no. 4, pp. 364–372, 2010. View at Publisher · View at Google Scholar · View at Scopus
  94. J. C. Chachques, J. C. Trainini, N. Lago, M. Cortes-Morichetti, O. Schussler, and A. Carpentier, “Myocardial Assistance by Grafting a New Bioartificial Upgraded Myocardium (MAGNUM trial): clinical feasibility study,” Annals of Thoracic Surgery, vol. 85, no. 3, pp. 901–908, 2008. View at Publisher · View at Google Scholar · View at Scopus
  95. U. Sartipy, A. Albåge, and D. Lindblom, “The Dor procedure for left ventricular reconstruction. Ten-year clinical experience,” European Journal of Cardio-Thoracic Surgery, vol. 27, no. 6, pp. 1005–1010, 2005. View at Publisher · View at Google Scholar · View at Scopus
  96. P. Ferrazzi, M. Triggiani, A. Iacovoni et al., “Surgical ventricular restoration by means of a new technique to preserve left ventricular compliance: the horseshoe repair,” The Journal of Thoracic and Cardiovascular Surgery, vol. 136, no. 5, pp. 1382–1383, 2008. View at Publisher · View at Google Scholar · View at Scopus