Table of Contents Author Guidelines Submit a Manuscript
Cardiology Research and Practice
Volume 2013, Article ID 195456, 15 pages
http://dx.doi.org/10.1155/2013/195456
Review Article

Receptor Inhibitors in Acute Coronary Syndromes: What Is New on the Horizon?

Department of Anesthesiology, Yale University, New Haven, CT 06520, USA

Received 13 October 2012; Accepted 21 December 2012

Academic Editor: Ping-Yen Liu

Copyright © 2013 Adriana Dana Oprea and Wanda M. Popescu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Cohen, “Improving long-term ACS management: is there a role for the new antiplatelets?” Journal of Interventional Cardiology, vol. 25, no. 5, pp. 425–432, 2012. View at Publisher · View at Google Scholar
  2. R. Bhatheja and D. Mukherjee, “Acute Coronary syndromes: unstable angina/non-ST elevation myocardial infarction,” Critical Care Clinics, vol. 23, no. 4, pp. 709–735, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. G. W. Stone and H. D. Aronow, “Long-term care after percutaneous coronary intervention: focus on the role of antiplatelet therapy,” Mayo Clinic Proceedings, vol. 81, no. 5, pp. 641–652, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Gladding, M. Webster, J. Ormiston, S. Olsen, and H. White, “Antiplatelet drug nonresponsiveness,” American Heart Journal, vol. 155, no. 4, pp. 591–599, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Taubert, A. Kastrati, S. Harlfinger et al., “Pharmacokinetics of clopidogrel after administration of a high loading dose,” Thrombosis and Haemostasis, vol. 92, no. 2, pp. 311–316, 2004. View at Google Scholar · View at Scopus
  6. Plavix, http://products.sanofi.ca/en/plavix.pdf.
  7. R. Hall and C. D. Mazer, “Antiplatelet drugs: a review of their pharmacology and management in the perioperative period,” Anesthesia and Analgesia, vol. 112, no. 2, pp. 292–318, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. W. Hochholzer, D. Trenk, D. Frundi et al., “Time dependence of platelet inhibition after a 600-mg loading dose of clopidogrel in a large, unselected cohort of candidates for percutaneous coronary intervention,” Circulation, vol. 111, no. 20, pp. 2560–2564, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. P. H. Slugg, D. R. Much, W. B. Smith, R. Vargas, P. Nichola, and J. Necciari, “Cirrhosis does not afffect the pharmacokinetics and pharmacodynamics of clopidogrel,” Journal of Clinical Pharmacology, vol. 40, no. 4, pp. 396–401, 2000. View at Google Scholar · View at Scopus
  10. G. Deray, C. Bagnis, R. Brouard et al., “Clopidogrel activities in patients with renal function impairment,” Clinical Drug Investigation, vol. 16, no. 4, pp. 319–328, 1998. View at Publisher · View at Google Scholar · View at Scopus
  11. D. L. Bhatt, “Prasugrel in clinical practice,” The New England Journal of Medicine, vol. 361, no. 10, pp. 940–942, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. S. D. Wiviott, E. M. Antman, and E. Braunwald, “Prasugrel,” Circulation, vol. 122, no. 4, pp. 394–403, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. P. P. Dobesh, “Pharmacokinetics and pharmacodynamics of prasugrel, a thienopyridine P2Y12 inhibitor,” Pharmacotherapy, vol. 29, no. 9, pp. 1089–1102, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. M. T. Martin, S. A. Spinler, and E. A. Nutescu, “Emerging antiplatelet therapies in percutaneous coronary intervention: a focus on prasugrel,” Clinical Therapeutics, vol. 33, no. 4, pp. 425–442, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. D. S. Small, R. E. Wrishko, C. S. Ernest et al., “Prasugrel pharmacokinetics and pharmacodynamics in subjects with moderate renal impairment and end-stage renal disease,” Journal of Clinical Pharmacy and Therapeutics, vol. 34, no. 5, pp. 585–594, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. S. D. Wiviott, E. Braunwald, C. H. McCabe et al., “Prasugrel versus clopidogrel in patients with acute coronary syndromes,” The New England Journal of Medicine, vol. 357, no. 20, pp. 2001–2015, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. R. E. Wrishko, C. S. Ernest, D. S. Small et al., “Population pharmacokinetic analyses to evaluate the influence of intrinsic and extrinsic factors on exposure of prasugrel active metabolite in TRITON-TIMI 38,” Journal of Clinical Pharmacology, vol. 49, no. 8, pp. 984–998, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Trumel, B. Payrastre, M. Plantavid et al., “A key role of adenosine diphosphate in the irreversible platelet aggregation induced by the PAR1-activating peptide through the late activation of phosphoinositide 3-kinase,” Blood, vol. 94, no. 12, pp. 4156–4165, 1999. View at Google Scholar · View at Scopus
  19. A. K. Wihlborg, L. Wang, O. O. Braun et al., “ADP receptor P2Y12 is expressed in vascular smooth muscle cells and stimulates contraction in human blood vessels,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 24, no. 10, pp. 1810–1815, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. J. J. Nawarskas and S. M. Clark, “Ticagrelor: a novel reversible oral antiplatelet agent,” Cardiology in Review, vol. 19, no. 2, pp. 95–100, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Kowalczyk, M. Banach, D. P. Mikhailidis, S. Hannam, and J. Rysz, “Ticagrelor—a new platelet aggregation inhibitor in patients with acute coronary syndromes. An improvement of other inhibitors?” Medical Science Monitor, vol. 15, no. 12, pp. MS24–MS30, 2009. View at Google Scholar · View at Scopus
  22. S. D. Anderson, N. K. Shah, J. Yim, and B. J. Epstein, “Efficacy and safety of ticagrelor: a reversible P2Y12 receptor antagonist,” Annals of Pharmacotherapy, vol. 44, no. 3, pp. 524–537, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. K. Butler and R. Teng, “Pharmacokinetics, pharmacodynamics, and safety of ticagrelor in volunteers with mild hepatic impairment,” Journal of Clinical Pharmacology, vol. 51, no. 7, pp. 978–987, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. R. F. Storey, K. P. Bliden, R. Ecob et al., “Earlier recovery of platelet function after discontinuation of treatment with ticagrelor compared with clopidogrel in patients with high antiplatelet responses,” Journal of Thrombosis and Haemostasis, vol. 9, no. 9, pp. 1730–1737, 2011. View at Publisher · View at Google Scholar
  25. P. A. Gurbel, K. P. Bliden, K. Butler et al., “Randomized double-blind assessment of the ONSET and OFFSET of the antiplatelet effects of ticagrelor versus clopidogrel in patients with stable coronary artery disease: the ONSET/OFFSET study,” Circulation, vol. 120, no. 25, pp. 2577–2585, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. R. F. Storey, S. Husted, R. A. Harrington et al., “Inhibition of platelet aggregation by AZD6140, a reversible oral P2Y12 receptor antagonist, compared with clopidogrel in patients with acute coronary syndromes,” Journal of the American College of Cardiology, vol. 50, no. 19, pp. 1852–1856, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. D. Alexopoulos, A. Galati, I. Xanthopoulou et al. et al., “Ticagrelor versus prasugrel in acute coronary syndrome patients with high on-clopidogrel platelet reactivity following percutaneous coronary intervention: a pharmacodynamic study,” Journal of the American College of Cardiology, vol. 60, no. 3, pp. 193–199, 2012. View at Publisher · View at Google Scholar
  28. N. B. Norgard, “Cangrelor: a novel P2Y12 receptor antagonist,” Expert Opinion on Investigational Drugs, vol. 18, no. 8, pp. 1219–1230, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. J. S. Berger, M. T. Roe, C. M. Gibson et al., “Safety and feasibility of adjunctive antiplatelet therapy with intravenous elinogrel, a direct-acting and reversible P2Y12 ADP-receptor antagonist, before primary percutaneous intervention in patients with ST-elevation myocardial infarction: the Early Rapid ReversAl of Platelet ThromboSis with Intravenous Elinogrel before PCI to Optimize REperfusion in Acute Myocardial Infarction (ERASE MI),” American Heart Journal, vol. 158, no. 6, pp. 998.e1–1004.e1, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. M. S. Sabatine, “Novel antiplatelet strategies in acute coronary syndromes,” Cleveland Clinic Journal of Medicine, vol. 76, supplement 1, pp. S8–S15, 2009. View at Google Scholar · View at Scopus
  31. A. D. Michelson, M. Cattaneo, J. W. Eikelboom et al., “Aspirin resistance: position paper of the working group on aspirin resistance,” Journal of Thrombosis and Haemostasis, vol. 3, no. 6, pp. 1309–1311, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. L. Bonello, U. S. Tantry, R. Marcucci et al., “Consensus and future directions on the definition of high on-treatment platelet reactivity to adenosine diphosphate,” Journal of the American College of Cardiology, vol. 56, no. 12, pp. 919–933, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. F. Santilli, N. Vazzana, R. Liani, M. T. Guagnano, and G. Davì, “Platelet activation in obesity and metabolic syndrome,” Obesity Reviews, vol. 13, no. 1, pp. 27–42, 2012. View at Publisher · View at Google Scholar
  34. P. A. Gurbel, M. J. Antonino, and U. S. Tantry, “Recent developments in clopidogrel pharmacology and their relation to clinical outcomes,” Expert Opinion on Drug Metabolism and Toxicology, vol. 5, no. 8, pp. 989–1004, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. Z. Qureshi and A. R. Hobson, “Clopidogrel “resistance”: where are we now?” Cardiovascular Therapeutics, vol. 31, no. 1, pp. 3–11, 2013. View at Publisher · View at Google Scholar
  36. D. Williams and J. Feely, “Pharmacokinetic-pharmacodynamic drug interactions with HMG-CoA reductase inhibitors,” Clinical Pharmacokinetics, vol. 41, no. 5, pp. 343–370, 2002. View at Google Scholar · View at Scopus
  37. W. C. Lau, L. A. Waskell, P. B. Watkins et al., “Atorvastatin reduces the ability of clopidogrel to inhibit platelet aggregation: a new drug-drug interaction,” Circulation, vol. 107, no. 1, pp. 32–37, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. W. C. Lau and P. A. Gurbel, “The drug-drug interaction between proton pump inhibitors and clopidogrel,” Canadian Medical Association Journal, vol. 180, no. 7, pp. 699–700, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. N. S. Abraham, “Prescribing proton pump inhibitor and clopidogrel together: current state of recommendations,” Current Opinion in Gastroenterology, vol. 27, no. 6, pp. 558–564, 2011. View at Publisher · View at Google Scholar
  40. T. Burkard, C. A. Kaiser, H. Brunner-La Rocca et al., “Combined clopidogrel and proton pump inhibitor therapy is associated with higher cardiovascular event rates after percutaneous coronary intervention: a report from the BASKET trial,” Journal of Internal Medicine, vol. 271, no. 3, pp. 257–263, 2012. View at Publisher · View at Google Scholar
  41. T. Cuisset, P. E. Morange, and M. C. Alessi, “Recent advances in the pharmacogenetics of clopidogrel,” Human Genetics, vol. 131, no. 5, pp. 653–664, 2012. View at Publisher · View at Google Scholar
  42. M. Karaźniewicz-Łada, D. Danielak, and F. Główka, “Genetic and non-genetic factors affecting the response to clopidogrel therapy,” Expert Opinion on Pharmacotherapy, vol. 13, no. 5, pp. 663–683, 2012. View at Publisher · View at Google Scholar
  43. J. S. Hulot, J. P. Collet, J. Silvain et al., “Cardiovascular risk in clopidogrel-treated patients according to cytochrome P450 2C19*2 loss-of-function allele or proton pump inhibitor coadministration. A systematic meta-analysis,” Journal of the American College of Cardiology, vol. 56, no. 2, pp. 134–143, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. J. L. Mega, T. Simon, J. P. Collet et al., “Reduced-function CYP2C19 genotype and risk of adverse clinical outcomes among patients treated with clopidogrel predominantly for PCI: a meta-analysis,” The Journal of the American Medical Association, vol. 304, no. 16, pp. 1821–1830, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. D. R. Holmes, G. J. Dehmer, S. Kaul, D. Leifer, P. T. O'Gara, and C. M. Stein, “ACCF/AHA clopidogrel clinical alert: approaches to the FDA “boxed warning”: a report of the American college of cardiology foundation task force on clinical expert consensus documents and the American heart association,” Journal of the American College of Cardiology, vol. 56, no. 4, pp. 321–341, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. D. Sibbing, W. Koch, D. Gebhard et al., “Cytochrome 2c19*17 allelic variant, platelet aggregation, bleeding events, and stent thrombosis in clopidogrel-treated patients with coronary stent placement,” Circulation, vol. 121, no. 4, pp. 512–518, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. K. A. Tiroch, D. Sibbing, W. Koch et al., “Protective effect of the CYP2C19*17 polymorphism with increased activation of clopidogrel on cardiovascular events,” American Heart Journal, vol. 160, no. 3, pp. 506–512, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. C. Frére, T. Cuisset, B. Gaborit, M. C. Alessi, and J. S. Hulot, “The CYP2C19*17 allele is associated with better platelet response to clopidogrel in patients admitted for non-ST acute coronary syndrome,” Journal of Thrombosis and Haemostasis, vol. 7, no. 8, pp. 1409–1411, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. M. V. Holmes, P. Perel, T. Shah, A. D. Hingorani, and J. P. Casas, “CYP2C19 genotype, clopidogrel metabolism, platelet function, and cardiovascular events: a systematic review and meta-analysis,” The Journal of the American Medical Association, vol. 306, no. 24, pp. 2704–2714, 2011. View at Publisher · View at Google Scholar
  50. J. L. Mega, S. L. Close, S. D. Wiviott et al., “Genetic variants in ABCB1 and CYP2C19 and cardiovascular outcomes after treatment with clopidogrel and prasugrel in the TRITON-TIMI 38 trial: a pharmacogenetic analysis,” The Lancet, vol. 376, no. 9749, pp. 1312–1319, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. L. Wallentin, S. James, R. F. Storey et al., “Effect of CYP2C19 and ABCB1 single nucleotide polymorphisms on outcomes of treatment with ticagrelor versus clopidogrel for acute coronary syndromes: a genetic substudy of the PLATO trial,” The Lancet, vol. 376, no. 9749, pp. 1320–1328, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. H. J. Bouman, E. Schömig, J. W. van Werkum et al., “Paraoxonase-1 is a major determinant of clopidogrel efficacy,” Nature Medicine, vol. 17, no. 1, pp. 110–116, 2011. View at Publisher · View at Google Scholar
  53. D. Sibbing, W. Koch, S. Massberg et al., “No association of paraoxonase-1 Q192R genotypes with platelet response to clopidogrel and risk of stent thrombosis after coronary stenting,” European Heart Journal, vol. 32, no. 13, pp. 1605–1613, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. J. S. Hulot, J. P. Collet, G. Cayla et al., “CYP2C19 but not PON1 genetic variants influence clopidogrel pharmacokinetics, pharmacodynamics, and clinical efficacy in post-myocardial infarction patients,” Circulation: Cardiovascular Interventions, vol. 4, no. 5, pp. 422–428, 2011. View at Publisher · View at Google Scholar
  55. L. Bonello, M. Pansieri, J. Mancini et al., “High on-treatment platelet reactivity after prasugrel loading dose and cardiovascular events after percutaneous coronary intervention in acute coronary syndromes,” Journal of the American College of Cardiology, vol. 58, no. 5, pp. 467–473, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. N. A. Farid, R. L. Smith, T. A. Gillespie et al., “The disposition of prasugrel, a novel thienopyridine, in humans,” Drug Metabolism and Disposition, vol. 35, no. 7, pp. 1096–1104, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. J. L. F. Rehmel, J. A. Eckstein, N. A. Farid et al., “Interactions of two major metabolites of prasugrel, a thienopyridine antiplatelet agent, with the cytochromes P450,” Drug Metabolism and Disposition, vol. 34, no. 4, pp. 600–607, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. E. T. Williams, K. O. Jones, G. D. Ponsler et al., “The biotransformation of prasugrel, a new thienopyridine prodrug, by the human carboxylesterases 1 and 2,” Drug Metabolism and Disposition, vol. 36, no. 7, pp. 1227–1232, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. J. T. Brandt, S. L. Close, S. J. Iturria et al., “Common polymorphisms of CYP2C19 and CYP2C9 affect the pharmacokinetic and pharmacodynamic response to clopidogrel but not prasugrel,” Journal of Thrombosis and Haemostasis, vol. 5, no. 12, pp. 2429–2436, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. D. Alexopoulos, A. Panagiotou, I. Xanthopoulou et al., “Antiplatelet effects of prasugrel versus double clopidogrel in patients on hemodialysis and with high on-treatment platelet reactivity,” Journal of Thrombosis and Haemostasis, vol. 9, no. 12, pp. 2379–2385, 2011. View at Publisher · View at Google Scholar
  61. D. Alexopoulos, I. Xanthopoulou, P. Davlouros et al., “Prasugrel overcomes high on-clopidogrel platelet reactivity in chronic coronary artery disease patients more effectively than high dose (150 mg) clopidogrel,” American Heart Journal, vol. 162, no. 4, pp. 733–739, 2011. View at Google Scholar
  62. D. Alexopoulos, G. Dimitropoulos, P. Davlouros et al., “Prasugrel overcomes high on-clopidogrel platelet reactivity post-stenting more effectively than high-dose (150-mg) clopidogrel: the importance of cyp2c19 (*)2 genotyping,” JACC: Cardiovascular Interventions, vol. 4, no. 4, pp. 403–410, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. J. L. Mega, S. L. Close, S. D. Wiviott et al., “Cytochrome P-450 polymorphisms and response to clopidogrel,” The New England Journal of Medicine, vol. 360, no. 4, pp. 354–362, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. H. Neubauer, A. Kaiser, B. Busse, and A. Mügge, “Identification, evaluation and treatment of prasugrel low-response after coronary stent implantation—a preliminary study,” Thrombosis Research, vol. 126, no. 5, pp. e389–e391, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. D. J. Angiolillo, J. J. Badimon, J. F. Saucedo et al., “A pharmacodynamic comparison of prasugrel versus high-dose clopidogrel in patients with type 2 diabetes mellitus and coronary artery disease: results of the Optimizing anti-Platelet Therapy in diabetes MellitUS (OPTIMUS)-3 Trial,” European Heart Journal, vol. 32, no. 7, pp. 838–846, 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. D. Alexopoulos, “Prasugrel resistance: fact or fiction,” Platelets, vol. 23, no. 2, pp. 83–90, 2012. View at Publisher · View at Google Scholar
  67. I. Xanthopoulou, E. F. Stavrou, G. Kassimis, P. Goudas, and D. Alexopoulos, “Resistance to high-maintenance dose of prasugrel treated by ticagrelor: a case report,” Platelets. In press. View at Publisher · View at Google Scholar
  68. R. Teng, “Pharmacokinetic, pharmacodynamic and pharmacogenetic profile of the oral antiplatelet agent ticagrelor,” Clinical Pharmacokinetics, vol. 51, no. 5, pp. 305–318, 2012. View at Publisher · View at Google Scholar
  69. A. D. Michelson, “Methods for the measurement of platelet function,” American Journal of Cardiology, vol. 103, no. 3, supplement, pp. 20A–26A, 2009. View at Publisher · View at Google Scholar
  70. T. Gremmel, S. Steiner, D. Seidinger, R. Koppensteiner, S. Panzer, and C. W. Kopp, “Comparison of methods to evaluate clopidogrel-mediated platelet inhibition after percutaneous intervention with stent implantation,” Thrombosis and Haemostasis, vol. 101, no. 2, pp. 333–339, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. H. J. Bouman, E. Parlak, J. W. van Werkum et al., “Which platelet function test is suitable to monitor clopidogrel responsiveness? A pharmacokinetic analysis on the active metabolite of clopidogrel,” Journal of Thrombosis and Haemostasis, vol. 8, no. 3, pp. 482–488, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. D. Sibbing, S. Braun, S. Jawansky et al., “Assessment of ADP-induced platelet aggregation with light transmission aggregometry and multiple electrode platelet aggregometry before and after clopidogrel treatment,” Thrombosis and Haemostasis, vol. 99, no. 1, pp. 121–126, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. M. J. Price, S. Endemann, R. R. Gollapudi et al., “Prognostic significance of post-clopidogrel platelet reactivity assessed by a point-of-care assay on thrombotic events after drug-eluting stent implantation,” European Heart Journal, vol. 29, no. 8, pp. 992–1000, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. R. Marcucci, A. M. Gori, R. Paniccia et al., “Cardiovascular death and nonfatal myocardial infarction in acute coronary syndrome patients receiving coronary stenting are predicted by residual platelet reactivity to ADP detected by a point-of-care assay a 12-month follow-up,” Circulation, vol. 119, no. 2, pp. 237–242, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. R. K. Sharma, D. J. Voelker, R. Sharma, H. K. Reddy, H. Dod, and J. D. Marsh, “Evolving role of platelet function testing in coronary artery interventions,” Vascular Health and Risk Management, vol. 8, pp. 65–75, 2012. View at Publisher · View at Google Scholar
  76. P. Codner, M. Vaduganathan, E. Rechavia et al., “Clopidogrel response up to six months after acute myocardial infarction,” American Journal of Cardiology, vol. 110, no. 3, pp. 321–325, 2012. View at Publisher · View at Google Scholar
  77. J. Jang, J. Lim, K. Chang et al., “A comparison of INNOVANCE PFA P2Y and VerifyNow P2Y12 assay for the assessment of clopidogrel resistance in patients undergoing percutaneous coronary intervention,” Journal of Clinical Laboratory Analysis, vol. 26, no. 4, pp. 262–266, 2012. View at Publisher · View at Google Scholar
  78. N. M. Gibbs, “Point-of-care assessment of antiplatelet agents in the perioperative period: a review,” Anaesthesia and Intensive Care, vol. 37, no. 3, pp. 354–369, 2009. View at Google Scholar · View at Scopus
  79. N. J. Breet, J. W. van Werkum, H. J. Bouman et al., “Comparison of platelet function tests in predicting clinical outcome in patients undergoing coronary stent implantation,” The Journal of the American Medical Association, vol. 303, no. 8, pp. 754–762, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. D. Sibbing, S. Braun, T. Morath et al., “Platelet reactivity after clopidogrel treatment assessed with point-of-care analysis and early drug-eluting stent thrombosis,” Journal of the American College of Cardiology, vol. 53, no. 10, pp. 849–856, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. F. Mangiacapra, G. Patti, E. Barbato et al. et al., “A therapeutic window for platelet reactivity for patients undergoing elective percutaneous coronary intervention: results of the ARMYDA-PROVE (Antiplatelet therapy for Reduction of MYocardial Damage during Angioplasty-Platelet Reactivity for Outcome Validation Effort) study,” JACC: Cardiovascular Interventions, vol. 5, no. 3, pp. 281–289, 2012. View at Publisher · View at Google Scholar
  82. F. G. Kushner, M. Hand, S. C. Smith et al., “2009 focused updates: ACC/AHA guidelines for the management of patients with st-elevation myocardial infarction (Updating the 2004 guideline and 2007 focused update) and ACC/AHA/SCAI guidelines on percutaneous coronary intervention (updating the 2005 guideline and 2007 focused update) and ACC/AHA/SCAI guidelines on percutaneous coronary intervention (updating the 2005 guideline and 2007 focused update): a report of the American college of cardiology foundation/American heart association task force on practice guidelines,” Circulation, vol. 120, no. 22, pp. 2271–2306, 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. H. Jneid, J. L. Anderson, R. S. Wright et al. et al., “2012 ACCF/AHA focused update of the guideline for the management of patients with unstable angina/non-st-elevation myocardial infarction (updating the 2007 guideline and replacing the 2011 focused update): a report of the American college of cardiology foundation/American heart association task force on practice guidelines,” Circulation, vol. 126, no. 7, pp. 875–910, 2012. View at Publisher · View at Google Scholar
  84. S. R. Mehta, J. F. Tanguay, J. W. Eikelboom et al., “Double-dose versus standard-dose clopidogrel and high-dose versus low-dose aspirin in individuals undergoing percutaneous coronary intervention for acute coronary syndromes (CURRENT-OASIS 7): a randomised factorial trial,” The Lancet, vol. 376, no. 9748, pp. 1233–1243, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. M. T. Roe, P. W. Armstrong, K. A. Fox et al. et al., “Prasugrel versus clopidogrel for acute coronary syndromes without revascularization,” The New England Journal of Medicine, vol. 367, no. 14, pp. 1297–1309, 2012. View at Publisher · View at Google Scholar
  86. G. Montalescot, S. D. Wiviott, E. Braunwald et al., “Prasugrel compared with clopidogrel in patients undergoing percutaneous coronary intervention for ST-elevation myocardial infarction (TRITON-TIMI 38): double-blind, randomised controlled trial,” The Lancet, vol. 373, no. 9665, pp. 723–731, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. L. Wallentin, R. C. Becker, A. Budaj et al., “Ticagrelor versus clopidogrel in patients with acute coronary syndromes,” The New England Journal of Medicine, vol. 361, no. 11, pp. 1045–1057, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. R. A. Harrington, G. W. Stone, S. McNulty et al., “Platelet inhibition with cangrelor in patients undergoing PCI,” The New England Journal of Medicine, vol. 361, no. 24, pp. 2318–2329, 2009. View at Publisher · View at Google Scholar · View at Scopus
  89. D. L. Bhatt, A. M. Lincoff, C. M. Gibson et al., “Intravenous platelet blockade with cangrelor during PCI,” The New England Journal of Medicine, vol. 361, no. 24, pp. 2330–2341, 2009. View at Publisher · View at Google Scholar · View at Scopus
  90. G. N. Levine, E. R. Bates, J. C. Blankenship et al., “2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions,” Circulation, vol. 124, pp. e574–e651, 2011. View at Publisher · View at Google Scholar
  91. C. W. Hamm, J. P. Bassand, S. Agewall et al. et al., “ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: the task force for the management of acute coronary syndromes (ACS) in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC),” European Heart Journal, vol. 32, no. 23, pp. 2999–3054, 2011. View at Google Scholar
  92. P. G. Steg, S. K. James, D. Atar et al., “ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation,” European Heart Journal, vol. 33, no. 20, pp. 2569–2619, 2012. View at Publisher · View at Google Scholar
  93. Z. M. Chen, L. X. Jiang, Y. P. Chen et al., “Addition of clopidogrel to aspirin in 45,852 patients with acute myocardial infarction: randomised placebo-controlled trial,” The Lancet, vol. 366, no. 9497, pp. 1607–1621, 2005. View at Publisher · View at Google Scholar · View at Scopus
  94. M. S. Sabatine, C. P. Cannon, C. M. Gibson et al., “Addition of clopidogrel to aspirin and fibrinolytic therapy for myocardial infarction with ST-segment elevation,” The New England Journal of Medicine, vol. 352, no. 12, pp. 1179–1189, 2005. View at Publisher · View at Google Scholar · View at Scopus
  95. C. M. Barker, S. S. Murray, P. S. Teirstein, D. E. Kandzari, E. J. Topol, and M. J. Price, “Pilot study of the antiplatelet effect of increased clopidogrel maintenance dosing and its relationship to CYP2C19 genotype in patients with high on-treatment reactivity,” JACC: Cardiovascular Interventions, vol. 3, no. 10, pp. 1001–1007, 2010. View at Publisher · View at Google Scholar · View at Scopus
  96. L. Bonello, F. Paganelli, M. Arpin-Bornet et al., “Vasodilator-stimulated phosphoprotein phosphorylation analysis prior to percutaneous coronary intervention for exclusion of postprocedural major adverse cardiovascular events,” Journal of Thrombosis and Haemostasis, vol. 5, no. 8, pp. 1630–1636, 2007. View at Publisher · View at Google Scholar · View at Scopus
  97. T. Bauer, H. J. Bouman, J. W. van Werkum, N. F. Ford, J. M. ten Berg, and D. Taubert, “Impact of CYP2C19 variant genotypes on clinical efficacy of antiplatelet treatment with clopidogrel: systematic review and meta-analysis,” The British Medical Journal, vol. 343, Article ID d4588, 2011. View at Publisher · View at Google Scholar
  98. J. P. Collet, J. S. Hulot, A. Pena et al., “Cytochrome P450 2C19 polymorphism in young patients treated with clopidogrel after myocardial infarction: a cohort study,” The Lancet, vol. 373, no. 9660, pp. 309–317, 2009. View at Publisher · View at Google Scholar · View at Scopus
  99. J. P. Collet, J. S. Hulot, G. Anzaha et al., “High doses of clopidogrel to overcome genetic resistance: the randomized crossover clovis-2 (clopidogrel and response variability investigation study 2),” JACC: Cardiovascular Interventions, vol. 4, no. 4, pp. 392–402, 2011. View at Publisher · View at Google Scholar · View at Scopus
  100. P. Fontana, J. S. Hulot, P. de Moerloose, and P. Gaussem, “Influence of CYP2C19 and CYP3A4 gene polymorphisms on clopidogrel responsiveness in healthy subjects,” Journal of Thrombosis and Haemostasis, vol. 5, no. 10, pp. 2153–2155, 2007. View at Publisher · View at Google Scholar · View at Scopus
  101. T. Geisler, E. Schaeffeler, J. Dippon et al., “CYP2C19 and nongenetic factors predict poor responsiveness to clopidogrel loading dose after coronary stent implantation,” Pharmacogenomics, vol. 9, no. 9, pp. 1251–1259, 2008. View at Publisher · View at Google Scholar · View at Scopus
  102. B. Giusti, A. M. Gori, R. Marcucci et al., “Relation of cytochrome P450 2C19 loss-of-function polymorphism to occurrence of drug-eluting coronary stent thrombosis,” American Journal of Cardiology, vol. 103, no. 6, pp. 806–811, 2009. View at Publisher · View at Google Scholar · View at Scopus
  103. B. Giusti, A. M. Gori, R. Marcucci et al., “Cytochrome P450 2C19 loss-of-function polymorphism, but not CYP3A4 IVS10+12G/A and P2Y12 T744C polymorphisms, is associated with response variability to dual antiplatelet treatment in high-risk vascular patients,” Pharmacogenetics and Genomics, vol. 17, no. 12, pp. 1057–1064, 2007. View at Publisher · View at Google Scholar · View at Scopus
  104. P. Gladding, M. Webster, I. Zeng et al., “The pharmacogenetics and pharmacodynamics of clopidogrel response. An analysis from the princ (plavix response in coronary intervention) trial,” JACC: Cardiovascular Interventions, vol. 1, no. 6, pp. 620–627, 2008. View at Publisher · View at Google Scholar · View at Scopus
  105. A. Harmsze, J. W. van Werkum, H. J. Bouman et al., “Besides CYP2C19*2, the variant allele CYP2C9*3 is associated with higher on-clopidogrel platelet reactivity in patients on dual antiplatelet therapy undergoing elective coronary stent implantation,” Pharmacogenetics and Genomics, vol. 20, no. 1, pp. 18–25, 2010. View at Publisher · View at Google Scholar · View at Scopus
  106. W. Hochholzer, D. Trenk, M. F. Fromm et al., “Impact of cytochrome P450 2C19 loss-of-function polymorphism and of major demographic characteristics on residual platelet function after loading and maintenance treatment with clopidogrel in patients undergoing elective coronary stent placement,” Journal of the American College of Cardiology, vol. 55, no. 22, pp. 2427–2434, 2010. View at Publisher · View at Google Scholar · View at Scopus
  107. J. S. Hulot, A. Bura, E. Villard et al., “Cytochrome P450 2C19 loss-of-function polymorphism is a major determinant of clopidogrel responsiveness in healthy subjects,” Blood, vol. 108, no. 7, pp. 2244–2247, 2006. View at Publisher · View at Google Scholar · View at Scopus
  108. T. Jinnai, H. Horiuchi, T. Makiyama et al., “Impact of CYP2C19 polymorphisms on the antiplatelet effect of clopidogrel in an actual clinical setting in Japan,” Circulation Journal, vol. 73, no. 8, pp. 1498–1503, 2009. View at Publisher · View at Google Scholar · View at Scopus
  109. I. S. Kim, Y. H. Jeong, Y. Park et al., “Platelet inhibition by adjunctive cilostazol versus high maintenance-dose clopidogrel in patients with acute myocardial infarction according to cytochrome P450 2C19 genotype,” JACC: Cardiovascular Interventions, vol. 4, no. 4, pp. 381–391, 2011. View at Publisher · View at Google Scholar · View at Scopus
  110. J. M. Lee, S. Park, D. J. Shin et al., “Relation of genetic polymorphisms in the cytochrome P450 gene with clopidogrel resistance after drug-eluting stent implantation in Koreans,” American Journal of Cardiology, vol. 104, no. 1, pp. 46–51, 2009. View at Publisher · View at Google Scholar · View at Scopus
  111. A. Maeda, H. Ando, T. Asai et al., “Differential impacts of CYP2C19 gene polymorphisms on the antiplatelet effects of clopidogrel and ticlopidine,” Clinical Pharmacology and Therapeutics, vol. 89, no. 2, pp. 229–233, 2011. View at Publisher · View at Google Scholar · View at Scopus
  112. I. Y. Oh, K. W. Park, S. H. Kang et al. et al., “Association of cytochrome P450 2C19*2 polymorphism with clopidogrel response variability and cardiovascular events in Koreans treated with drug-eluting stents,” Heart, vol. 98, no. 2, pp. 139–144, 2012. View at Publisher · View at Google Scholar
  113. K. J. Park, H. S. Chung, S. R. Kim, H. J. Kim, J. Y. Han, and S. Y. Lee, “Clinical, pharmacokinetic, and pharmacogenetic determinants of clopidogrel resistance in Korean patients with acute coronary syndrome,” Korean Journal of Laboratory Medicine, vol. 31, no. 2, pp. 91–94, 2011. View at Publisher · View at Google Scholar · View at Scopus
  114. K. W. Park, J. J. Park, S. P. Lee et al., “Cilostazol attenuates on-treatment platelet reactivity in patients with CYP2C19 loss of function alleles receiving dual antiplatelet therapy: a genetic substudy of the CILON-T randomised controlled trial,” Heart, vol. 97, no. 8, pp. 641–647, 2011. View at Publisher · View at Google Scholar · View at Scopus
  115. A. A. R. Pettersen, H. Arnesen, T. B. Opstad, and I. Seljeflot, “The influence of CYP 2C19*2 polymorphism on platelet function testing during single antiplatelet treatment with clopidogrel,” Thrombosis Journal, vol. 9, article 4, 2011. View at Publisher · View at Google Scholar · View at Scopus
  116. T. Simon, C. Verstuyft, M. Mary-Krause et al. et al., “Genetic determinants of response to clopidogrel and cardiovascular events,” The New England Journal of Medicine, vol. 360, no. 4, pp. 363–375, 2009. View at Publisher · View at Google Scholar · View at Scopus
  117. A. R. Shuldiner, J. R. O'Connell, K. P. Bliden et al., “Association of cytochrome P450 2C19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel therapy,” The Journal of the American Medical Association, vol. 302, no. 8, pp. 849–858, 2009. View at Publisher · View at Google Scholar · View at Scopus
  118. K. Umemura, T. Furuta, and K. Kondo, “The common gene variants of CYP2C19 affect pharmacokinetics and pharmacodynamics in an active metabolite of clopidogrel in healthy subjects,” Journal of Thrombosis and Haemostasis, vol. 6, no. 8, pp. 1439–1441, 2008. View at Publisher · View at Google Scholar · View at Scopus
  119. D. J. Angiolillo, A. Fernandez-Ortiz, E. Bernardo et al., “Contribution of gene sequence variations of the hepatic cytochrome P450 3A4 enzyme to variability in individual responsiveness to clopidogrel,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 8, pp. 1895–1900, 2006. View at Publisher · View at Google Scholar · View at Scopus
  120. J. W. Suh, B. K. Koo, S. Y. Zhang et al., “Increased risk of atherothrombotic events associated with cytochrome P450 3A5 polymorphism in patients taking clopidogrel,” Canadian Medical Association Journal, vol. 174, no. 12, pp. 1715–1722, 2006. View at Publisher · View at Google Scholar · View at Scopus
  121. S. M. G. Smith, H. M. Judge, G. Peters et al., “Common sequence variations in the P2Y12 and CYP3A5 genes do not explain the variability in the inhibitory effects of clopidogrel therapy,” Platelets, vol. 17, no. 4, pp. 250–258, 2006. View at Publisher · View at Google Scholar · View at Scopus
  122. J. H. Oestreich, S. S. Smyth, and C. L. Campbell, “Platelet function analysis: at the edge of meaning,” Thrombosis and Haemostasis, vol. 101, no. 2, pp. 217–219, 2009. View at Google Scholar
  123. S. Matetzky, B. Shenkman, V. Guetta et al., “Clopidogrel resistance is associated with increased risk of recurrent atherothrombotic events in patients with acute myocardial infarction,” Circulation, vol. 109, no. 25, pp. 3171–3175, 2004. View at Google Scholar · View at Scopus
  124. P. A. Gurbel, K. P. Bliden, K. Guyer et al., “Platelet reactivity in patients and recurrent events post-stenting: results of the PREPARE POST-STENTING study,” Journal of the American College of Cardiology, vol. 46, no. 10, pp. 1820–1826, 2005. View at Publisher · View at Google Scholar · View at Scopus
  125. K. P. Bliden, J. DiChiara, U. S. Tantry, A. K. Bassi, S. K. Chaganti, and P. A. Gurbel, “Increased risk in patients with high platelet aggregation receiving chronic clopidogrel therapy undergoing percutaneous coronary intervention. Is the current antiplatelet therapy adequate?” Journal of the American College of Cardiology, vol. 49, no. 6, pp. 657–666, 2007. View at Publisher · View at Google Scholar · View at Scopus
  126. A. Migliorini, R. Valenti, R. Marcucci et al., “High residual platelet reactivity after clopidogrel loading and long-term clinical outcome after drug-eluting stenting for unprotected left main coronary disease,” Circulation, vol. 120, no. 22, pp. 2214–2221, 2009. View at Publisher · View at Google Scholar · View at Scopus
  127. S. El Ghannudi, P. Ohlmann, N. Meyer et al., “Impact of P2Y12 inhibition by clopidogrel on cardiovascular mortality in unselected patients treated by percutaneous coronary angioplasty: a prospective registry,” JACC: Cardiovascular Interventions, vol. 3, no. 6, pp. 648–656, 2010. View at Publisher · View at Google Scholar · View at Scopus