Table of Contents Author Guidelines Submit a Manuscript
Cardiology Research and Practice
Volume 2014 (2014), Article ID 157508, 8 pages
http://dx.doi.org/10.1155/2014/157508
Review Article

Aerobic Exercise as an Adjunct Therapy for Improving Cognitive Function in Heart Failure

Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA 30322, USA

Received 31 December 2013; Revised 12 May 2014; Accepted 18 May 2014; Published 3 July 2014

Academic Editor: Vicky A. Cameron

Copyright © 2014 Rebecca A. Gary and Kathryn Brunn. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. L. Roger, “Epidemiology of heart failure,” Circulation Research, vol. 113, no. 6, pp. 646–659, 2013. View at Publisher · View at Google Scholar
  2. R. L. C. Vogels, P. Scheltens, J. M. Schroeder-Tanka, and H. C. Weinstein, “Cognitive impairment in heart failure: a systematic review of the literature,” European Journal of Heart Failure, vol. 9, no. 5, pp. 440–449, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. J. A. Dodson, T. T. Truong, V. R. Towle, G. Kerins, and S. I. Chaudhry, “Cognitive impairment in older adults with heart failure: prevalence, documentation, and impact on outcomes,” The American Journal of Medicine, vol. 126, no. 2, pp. 120–126, 2013. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Harkness, G. A. Heckman, and R. S. McKelvie, “The older patient with heart failure: high risk for frailty and cognitive impairment,” Expert Review of Cardiovascular Therapy, vol. 10, no. 6, pp. 779–795, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. A. M. Hajduk, C. I. Kiefe, S. D. Person, J. G. Gore, and J. S. Saczynski, “Cognitive change in heart failure: a systematic review,” Circulation: Cardiovascular Quality and Outcomes, vol. 6, no. 4, pp. 451–460, 2013. View at Publisher · View at Google Scholar
  6. A. M. Hajduk, S. C. Lemon, D. D. McManus et al., “Cognitive impairment and self-care in heart failure,” Clinical Epidemiology, vol. 5, no. 1, pp. 407–416, 2013. View at Publisher · View at Google Scholar
  7. S. J. Bennett and M. J. Sauvé, “Cognitive deficits in patients with heart failure: a review of the literature,” The Journal of Cardiovascular Nursing, vol. 18, no. 3, pp. 219–242, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. S. J. Pressler, “Cognitive functioning and chronic heart failure: a review of the literature (2002-July 2007),” The Journal of Cardiovascular Nursing, vol. 23, no. 3, pp. 239–249, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. S. J. Pressler, U. Subramanian, D. Kareken et al., “Cognitive deficits in chronic heart failure,” Nursing Research, vol. 59, no. 2, pp. 127–139, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. E. Dardiotis, G. Giamouzis, D. Mastrogiannis et al., “Cognitive impairment in heart failure,” Cardiology Research and Practice, vol. 2012, Article ID 595821, 9 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Riegel, D. K. Moser, S. D. Anker et al., “State of the science: promoting self-care in persons with heart failure: A scientific statement from the american heart association,” Circulation, vol. 120, no. 12, pp. 1141–1163, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. E. T. Ang, Y. K. Tai, S. Q. Lo, R. Seet, and T. W. Soong, “Neurodegenerative diseases: exercising toward neurogenesis and neuroregeneration,” Frontiers in Aging Neuroscience, vol. 2, article 25, 2010. View at Publisher · View at Google Scholar
  13. J. W. Ashford and L. Jarvik, “Alzheimer's disease: does neuron plasticity predispose to axonal neurofibrillary degeneration?” The New England Journal of Medicine, vol. 313, no. 6, pp. 388–389, 1985. View at Google Scholar · View at Scopus
  14. D. Tanne, D. Freimark, A. Poreh et al., “Cognitive functions in severe congestive heart failure before and after an exercise training program,” International Journal of Cardiology, vol. 103, no. 2, pp. 145–149, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. J. E. Ahlskog, Y. E. Geda, N. R. Graff-Radford, and R. C. Petersen, “Physical exercise as a preventive or disease-modifying treatment of dementia and brain aging,” Mayo Clinic Proceedings, vol. 86, no. 9, pp. 876–884, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. A. F. Kramer and K. I. Erickson, “Capitalizing on cortical plasticity: influence of physical activity on cognition and brain function,” Trends in Cognitive Sciences, vol. 11, no. 8, pp. 342–348, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Thomas and C. I. Baker, “Teaching an adult brain new tricks: a critical review of evidence for training-dependent structural plasticity in humans,” NeuroImage, vol. 73, pp. 225–236, 2013. View at Publisher · View at Google Scholar · View at Scopus
  18. C. H. Hillman, K. I. Erickson, and A. F. Kramer, “Be smart, exercise your heart: exercise effects on brain and cognition,” Nature Reviews Neuroscience, vol. 9, no. 1, pp. 58–65, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Angevaren, G. Aufdemkampe, H. J. Verhaar, A. Aleman, and L. Vanhees, “Physical activity and enhanced fitness to improve cognitive function in older people without known cognitive impairment,” Cochrane Database of Systematic Reviews, no. 2, Article ID CD005381, 2008. View at Google Scholar · View at Scopus
  20. M. W. Marlatt, M. C. Potter, P. J. Lucassen, and H. van Praag, “Running throughout middle-age improves memory function, hippocampal neurogenesis, and BDNF levels in female C57BL/6J mice,” Developmental Neurobiology, vol. 72, no. 6, pp. 943–952, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Kempermann, H. G. Kuhn, and F. H. Gage, “Experience-induced neurogenesis in the senescent dentate gyrus,” The Journal of Neuroscience, vol. 18, no. 9, pp. 3206–3212, 1998. View at Google Scholar · View at Scopus
  22. C. Hjelm, A. Dahl, A. Broström, J. Mårtensson, B. Johansson, and A. Strömberg, “The influence of heart failure on longitudinal changes in cognition among individuals 80years of age and older,” Journal of Clinical Nursing, vol. 21, no. 7-8, pp. 994–1003, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. O. P. Almeida, G. J. Garrido, C. Beer, N. T. Lautenschlager, L. Arnolda, and L. Flicker, “Cognitive and brain changes associated with ischaemic heart disease and heart failure,” European Heart Journal, vol. 33, no. 14, pp. 1769–1776, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. R. C. Petersen and J. O'Brien, “Mild cognitive impairment should be considered for DSM-V,” Journal of Geriatric Psychiatry and Neurology, vol. 19, no. 3, pp. 147–154, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. G. A. Heckman, C. J. Patterson, C. Demers, J. St Onge, I. D. Turpie, and R. S. McKelvie, “Heart failure and cognitive impairment: challenges and opportunities.,” Clinical Interventions in Aging, vol. 2, no. 2, pp. 209–218, 2007. View at Google Scholar · View at Scopus
  26. B. Choi, J. S. Kim, Y. J. Yang et al., “Factors associated with decreased cerebral blood flow in congestive heart failure secondary to idiopathic dilated cardiomyopathy,” American Journal of Cardiology, vol. 97, no. 9, pp. 1365–1369, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. T. C. Alves, J. Rays, R. Fraguas Jr. et al., “Localized cerebral blood flow reductions in patients with heart failure: a study using 99mTc-HMPAO SPECT,” Journal of Neuroimaging, vol. 15, no. 2, pp. 150–156, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. R. F. Gottesman, M. A. Grega, M. M. Bailey et al., “Association between hypotension, low ejection fraction and cognitive performance in cardiac patients,” Behavioural Neurology, vol. 22, no. 1-2, pp. 63–71, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. K. F. Hoth, A. Poppas, D. J. Moser, R. H. Paul, and R. A. Cohen, “Cardiac dysfunction and cognition in older adults with heart failure,” Cognitive and Behavioral Neurology, vol. 21, no. 2, pp. 65–72, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. G. Zuccalà, G. Onder, C. Pedone et al., “Hypotension and cognitive impairment: selective association in patients with heart failure,” Neurology, vol. 57, no. 11, pp. 1986–1992, 2001. View at Google Scholar · View at Scopus
  31. J. C. de La Torre, “Cardiovascular risk factors promote brain hypoperfusion leading to cognitive decline and dementia,” Cardiovascular Psychiatry and Neurology, vol. 2012, Article ID 367516, 15 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. C. M. O'Connor, D. J. Whellan, K. L. Lee et al., “Efficacy and safety of exercise training in patients with chronic heart failure HF-ACTION randomized controlled trial,” The Journal of the American Medical Association, vol. 301, no. 14, pp. 1439–1450, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Baldasseroni, E. Mossello, B. Romboli et al., “Relationship between cognitive function and 6-minute walking test in older outpatients with chronic heart failure,” Aging Clinical and Experimental Research, vol. 22, no. 4, pp. 308–313, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. S. E. Barber, A. P. Clegg, and J. B. Young, “Is there a role for physical activity in preventing cognitive decline in people with mild cognitive impairment?” Age and Ageing, vol. 41, no. 1, pp. 5–8, 2012. View at Publisher · View at Google Scholar · View at Scopus
  35. K. Knaepen, M. Goekint, E. M. Heyman, and R. Meeusen, “Neuroplasticity exercise-induced response of peripheral brain-derived neurotrophic factor: a systematic review of experimental studies in human subjects,” Sports Medicine, vol. 40, no. 9, pp. 765–801, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. F. M. Ivey, A. S. Ryan, C. E. Hafer-Macko, and R. F. MacKo, “Improved cerebral vasomotor reactivity after exercise training in hemiparetic stroke survivors,” Stroke, vol. 42, no. 7, pp. 1994–2000, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. E. W. Griffin, R. G. Bechara, A. M. Birch, and A. M. Kelly, “Exercise enhances hippocampal-dependent learning in the rat: evidence for a BDNF-related mechanism,” Hippocampus, vol. 19, no. 10, pp. 973–980, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. C. R. Rooks, N. J. Thom, K. K. McCully, and R. K. Dishman, “Effects of incremental exercise on cerebral oxygenation measured by near-infrared spectroscopy: a systematic review,” Progress in Neurobiology, vol. 92, no. 2, pp. 134–150, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. K. I. Erickson and A. F. Kramer, “Aerobic exercise effects on cognitive and neural plasticity in older adults,” British Journal of Sports Medicine, vol. 43, no. 1, pp. 22–24, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. K. Hotting and B. Roder, “Beneficial effects of physical exercise on neuroplasticity and cognition,” Neuroscience & Biobehavioral Reviews, vol. 37, no. 9, pp. 2243–2257, 2013. View at Publisher · View at Google Scholar
  41. P. Heyn, B. C. Abreu, and K. J. Ottenbacher, “The effects of exercise training on elderly persons with cognitive impairment and dementia: A meta-analysis,” Archives of Physical Medicine and Rehabilitation, vol. 85, no. 10, pp. 1694–1704, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Colcombe and A. F. Kramer, “Fitness effects on the cognitive function of older adults: a meta-analytic study,” Psychological Science, vol. 14, no. 2, pp. 125–130, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. J. M. Burns, B. B. Cronk, H. S. Anderson et al., “Cardiorespiratory fitness and brain atrophy in early Alzheimer disease,” Neurology, vol. 71, no. 3, pp. 210–216, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. S. J. Colcombe, A. F. Kramer, E. McAuley, K. I. Erickson, and P. Scalf, “Neurocognitive aging and cardiovascular fitness: recent findings and future directions,” Journal of Molecular Neuroscience, vol. 24, no. 1, pp. 9–14, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. B. L. Marks, D. J. Madden, B. Bucur et al., “Role of aerobic fitness and aging on cerebral white matter integrity,” Annals of the New York Academy of Sciences, vol. 1097, pp. 171–174, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. S. J. Colcombe, K. I. Erickson, P. E. Scalf et al., “Aerobic exercise training increases brain volume in aging humans,” Journals of Gerontology A—Biological Sciences and Medical Sciences, vol. 61, no. 11, pp. 1166–1170, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. A. C. Pereira, D. E. Huddleston, A. M. Brickman et al., “An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 13, pp. 5638–5643, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. K. I. Erickson, D. L. Miller, and K. A. Roecklein, “The aging hippocampus: Interactions between exercise, depression, and BDNF,” Neuroscientist, vol. 18, no. 1, pp. 82–97, 2012. View at Publisher · View at Google Scholar · View at Scopus
  49. K. I. Erickson, A. M. Weinstein, B. P. Sutton et al., “Beyond vascularization: aerobic fitness is associated with N-acetylaspartate and working memory,” Brain and Behavior, vol. 2, no. 1, pp. 32–41, 2012. View at Publisher · View at Google Scholar
  50. E. B. Larson, L. Wang, J. D. Bowen et al., “Exercise is associated with reduced risk for incident dementia among persons 65 years of age and older,” Annals of Internal Medicine, vol. 144, no. 2, pp. 73–81, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. L. J. Podewils, E. Guallar, L. H. Kuller et al., “Physical activity, APOE genotype, and dementia risk: findings from the Cardiovascular Health Cognition Study,” American Journal of Epidemiology, vol. 161, no. 7, pp. 639–651, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. D. Laurin, R. Verreault, J. Lindsay, K. MacPherson, and K. Rockwood, “Physical activity and risk of cognitive impairment and dementia in elderly persons,” Archives of Neurology, vol. 58, no. 3, pp. 498–504, 2001. View at Google Scholar · View at Scopus
  53. R. Ruscheweyh, C. Willemer, K. Krüger et al., “Physical activity and memory functions: an interventional study,” Neurobiology of Aging, vol. 32, no. 7, pp. 1304–1319, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. D. E. Barnes, K. Yaffe, W. A. Satariano, and I. B. Tager, “A longitudinal study of cardiorespiratory fitness and cognitive function in healthy older adults,” Journal of the American Geriatrics Society, vol. 51, no. 4, pp. 459–465, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Richards, R. Hardy, and M. E. J. Wadsworth, “Does active leisure protect cognition? Evidence from a national birth cohort,” Social Science and Medicine, vol. 56, no. 4, pp. 785–792, 2003. View at Publisher · View at Google Scholar · View at Scopus
  56. S. Rovio, G. Spulber, L. J. Nieminen et al., “The effect of midlife physical activity on structural brain changes in the elderly,” Neurobiology of Aging, vol. 31, no. 11, pp. 1927–1936, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. N. T. Lautenschlager, K. L. Cox, L. Flicker et al., “Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: a randomized trial,” Journal of the American Medical Association, vol. 300, no. 9, pp. 1027–1037, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Citri and R. C. Malenka, “Synaptic plasticity: multiple forms, functions, and mechanisms,” Neuropsychopharmacology, vol. 33, no. 1, pp. 18–41, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. C. W. Cotman and N. C. Berchtold, “Exercise: a behavioral intervention to enhance brain health and plasticity,” Trends in Neurosciences, vol. 25, no. 6, pp. 295–301, 2002. View at Publisher · View at Google Scholar · View at Scopus
  60. S. Vaynman, Z. Ying, and F. Gomez-Pinilla, “Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition,” European Journal of Neuroscience, vol. 20, no. 10, pp. 2580–2590, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. C. Lopez-Lopez, D. LeRoith, and I. Torres-Aleman, “Insulin-like growth factor I is required for vessel modeling in the adult brain,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 26, pp. 9833–9838, 2004. View at Publisher · View at Google Scholar · View at Scopus
  62. J. L. Trejo, E. Carro, and I. Torres-Alemán, “Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus,” Journal of Neuroscience, vol. 21, no. 5, pp. 1628–1634, 2001. View at Google Scholar · View at Scopus
  63. K. Fabel, B. Tam, D. Kaufer et al., “VEGF is necessary for exercise-induced adult hippocampal neurogenesis,” European Journal of Neuroscience, vol. 18, no. 10, pp. 2803–2812, 2003. View at Publisher · View at Google Scholar · View at Scopus
  64. E. Blomstrand, D. Perrett, M. Parry-Billings, and E. A. Newsholme, “Effect of sustained exercise on plasma amino acid concentrations and on 5-hydroxytryptamine metabolism in six different brain regions in the rat,” Acta Physiologica Scandinavica, vol. 136, no. 3, pp. 473–481, 1989. View at Publisher · View at Google Scholar · View at Scopus
  65. D. E. Fordyce and R. P. Farrar, “Enhancement of spatial learning in F344 rats by physical activity and related learning-associated alterations in hippocampal and cortical cholinergic functioning,” Behavioural Brain Research, vol. 46, no. 2, pp. 123–133, 1991. View at Publisher · View at Google Scholar · View at Scopus
  66. N. C. Berchtold, J. P. Kesslak, and C. W. Cotman, “Hippocampal brain-derived neurotrophic factor gene regulation by exercise and the medial septum,” Journal of Neuroscience Research, vol. 68, no. 5, pp. 511–521, 2002. View at Publisher · View at Google Scholar · View at Scopus
  67. B. Knusel, J. W. Winslow, A. Rosenthal et al., “Promotion of central cholinergic and dopaminergic neuron differentiation by brain-derived neurotrophic factor but not neurotrophin 3,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 3, pp. 961–965, 1992. View at Publisher · View at Google Scholar · View at Scopus
  68. A. F. Kramer, K. I. Erickson, and S. J. Colcombe, “Exercise, cognition, and the aging brain,” Journal of Applied Physiology, vol. 101, no. 4, pp. 1237–1242, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. R. Gallagher, A. Sullivan, R. Burke et al., “Mild cognitive impairment, screening, and patient perceptions in heart failure patients,” Journal of Cardiac Failure, vol. 19, no. 9, pp. 641–646, 2013. View at Publisher · View at Google Scholar
  70. M. Grimm, W. Yeganehfar, G. Laufer et al., “Cyclosporine may affect improvement of cognitive brain function after successful cardiac transplantation,” Circulation, vol. 94, no. 6, pp. 1339–1345, 1996. View at Publisher · View at Google Scholar · View at Scopus
  71. R. C. Cassilhas, K. S. Lee, J. Fernandes et al., “Spatial memory is improved by aerobic and resistance exercise through divergent molecular mechanisms,” Neuroscience, vol. 202, pp. 309–317, 2012. View at Publisher · View at Google Scholar · View at Scopus
  72. Z. S. Nasreddine, N. A. Phillips, V. Bédirian et al., “The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment,” Journal of the American Geriatrics Society, vol. 53, no. 4, pp. 695–699, 2005. View at Publisher · View at Google Scholar · View at Scopus
  73. J. Cameron, L. Worrall-Carter, K. Page, B. Riegel, S. K. Lo, and S. Stewart, “Does cognitive impairment predict poor self-care in patients with heart failure?” European Journal of Heart Failure, vol. 12, no. 5, pp. 508–515, 2010. View at Publisher · View at Google Scholar · View at Scopus