Abstract

For computational purposes, a numerical algorithm maps a differential equation into an often complex difference equation whose structure and stability depends on the scheme used. When considering nonlinear models, standard and nonstandard integration routines can act invasively and numerical chaotic instabilities may arise. However, because nonstandard schemes offer a direct and generally simpler finite-difference representations, in this work nonstandard constructions were tested over three different systems: a photoconductor model, the Lorenz equations and the Van der Pol equations. Results showed that although some nonstandard constructions created a chaotic dynamics of their own, there was found a construction in every case that greatly reduced or successfully removed numerical chaotic instabilities. These improvements represent a valuable development to incorporate into more sophisticated algorithms.